Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease

Abstract

Genes and mechanisms involved in common complex diseases, such as the autoimmune disorders that affect approximately 5% of the population, remain obscure. Here we identify polymorphisms of the cytotoxic T lymphocyte antigen 4 gene (CTLA4)—which encodes a vital negative regulatory molecule of the immune system—as candidates for primary determinants of risk of the common autoimmune disorders Graves' disease, autoimmune hypothyroidism and type 1 diabetes. In humans, disease susceptibility was mapped to a non-coding 6.1?kb 3′ region of CTLA4, the common allelic variation of which was correlated with lower messenger RNA levels of the soluble alternative splice form of CTLA4. In the mouse model of type 1 diabetes, susceptibility was also associated with variation in CTLA-4 gene splicing with reduced production of a splice form encoding a molecule lacking the CD80/CD86 ligand-binding domain. Genetic mapping of variants conferring a small disease risk can identify pathways in complex disorders, as exemplified by our discovery of inherited, quantitative alterations of CTLA4 contributing to autoimmune tissue destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of the CD28CTLA4ICOS region with Graves' disease.
Figure 2: Expression of the human CTLA-4 mRNA isoforms correlates with genotype.
Figure 3: Sequence, splicing and expression of Ctla4 in NOD mice and congenic strains.

Similar content being viewed by others

References

  1. Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet. 33, 177–182 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Dahlman, I. et al. Parameters for reliable results in genetic association studies in common disease. Nature Genet. 30, 149–150 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Lesage, S. & Goodnow, C. C. Organ-specific autoimmune disease: a deficiency of tolerogenic stimulation. J. Exp. Med. 194, F31–F36 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Finger, E. & Bluestone, J. When ligand becomes receptor-tolerance via B7 signaling on DCs. Nature Immunol. 3, 1056–1057 (2002)

    Article  CAS  Google Scholar 

  5. Egen, J. G., Kuhns, M. S. & Allison, J. P. CTLA-4: new insights into its biological function and use in tumour immunotherapy. Nature Immunol. 3, 611–618 (2002)

    Article  CAS  Google Scholar 

  6. Nistico, L. et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum. Mol. Gen. 5, 1075–1080 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Marron, M. P. et al. Genetic and physical mapping of a type 1 diabetes susceptibility gene (IDDM12) to a 100-kb phagemid artificial chromosome clone containing D2S72-CTLA4-D2S105 on chromosome 2q33. Diabetes 49, 492–499 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Allahabadia, A. et al. The MHC class II region, CTLA-4 gene and ophthalmopathy in patients with Graves' disease. Lancet 358, 984–985 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Kristiansen, O. P., Larsen, Z. M. & Pociot, F. CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun. 1, 170–184 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Colucci, F., Bergman, M., Penha-Goncalves, C., Cilio, C. M. & Holmberg, D. Apoptosis resistance of nonobese diabetic peripheral lymphocytes linked to the Idd5 diabetes susceptibility region. Proc. Natl Acad. Sci. USA 94, 8670–8674 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hill, N. J. et al. The NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 49, 1744–1747 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Lamhamedi-Cherradi, S. E. et al. Further mapping of the Idd5.1 locus for autoimmune diabetes in NOD mice. Diabetes 50, 2874–2878 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Sharpe, A. H. & Freeman, G. J. The B7-CD28 superfamily. Nature Rev. Immunol. 2, 116–126 (2002)

    Article  CAS  Google Scholar 

  14. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002)

    Article  CAS  Google Scholar 

  15. Lin, H. et al. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J. Exp. Med. 188, 199–204 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chikuma, S., Imboden, J. & Bluestone, J. A. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 197, 129–135 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Cordell, H. J. & Clayton, D. G. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am. J. Hum. Genet. 70, 124–141 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Magistrelli, G. et al. A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol. 29, 3596–3602 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Oaks, M. K. & Hallett, K. M. Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease. J. Immunol. 164, 5015–5018 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Oaks, M. K. et al. A native soluble form of CTLA-4. Cell Immunol. 201, 144–153 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Kaijzel, E. L. et al. Allele-specific quantification of tumour necrosis factor alpha (TNF) transcription and the role of promoter polymorphisms in rheumatoid arthritis patients and healthy individuals. Genes Immun. 2, 135–144 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Lynch, K. W. & Weiss, A. A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J. Biol. Chem. 276, 24341–24347 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, Z.-M., He, P.-J. & Baker, C. Function of a bovine papillomavirus type 1 exonic splicing suppressor requires a suboptimal upstream 3′ splice site. J. Virol. 73, 29–36 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Asano, M., Toda, M., Sakguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell population. J. Exp. Med. 184, 387–396 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. Manzotti, C. et al. Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory cells. Eur. J. Immunol. 32, 2888–2896 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Maloy, K. J. et al. CD4 + CD25 + T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med. 197, 111–119 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakaguchi, S. Control of immune responses by naturally arising CD4(+ ) regulatory T cells that express Toll-like receptors. J. Exp. Med. 197, 397–401 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Kaufman, K. A. et al. The CTLA-4 gene is expressed in placental fibroblasts. Mol. Hum. Reprod. 5, 84–87 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Huang, D., Giscombe, R., Zhou, Y., Pirskanen, R. & Lefvert, A. Dinucleotide repeat expansion in the CTLA-4 gene leads to T cell hyper-reactivity via the CD28 pathway in myasthenia gravis. J. Neuroimmunol. 105, 69–77 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. Kouki, T. et al. CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves' disease. J. Immunol. 165, 6606–6611 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Maurer, M. et al. A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54, 1–8 (2002)

    Article  PubMed  Google Scholar 

  34. Magistrelli, G. et al. Identification of three alternatively spliced variants of human CD28 mRNA. Biochem. Biophys. Res. Commun. 259, 34–37 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Hanawa, H. et al. A novel costimulatory signalling in human T lymphocytes by a splice variant of CD28. Blood 99, 2138–2145 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. Howard, T. et al. Fine mapping of an IgE-controlling gene on chromosome 2q: analysis of CTLA4 and CD28. J. Allergy Clin. Immunol. 110, 743–751 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Todd, J. A. A protective role of the environment in the development of type 1 diabetes? Diabetic Med. 8, 906–910 (1991)

    Article  CAS  PubMed  Google Scholar 

  38. Strachan, D. P. Hay fever, hygiene, and household size. Br. Med. J. 299, 1259–1260 (1989)

    Article  CAS  Google Scholar 

  39. Bain, S. C., Todd, J. A. & Barnett, A. H. The British Diabetic Association — Warren Repository. Autoimmunity 7, 83–85 (1990)

    Article  CAS  PubMed  Google Scholar 

  40. Lernmark, A. et al. Family cell lines available for research. Am. J. Hum. Genet. 47, 1028–1030 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Patterson, C. C., Carson, D. J. & Hadden, D. R. Epidemiology of childhood IDDM in Northern Ireland 1989–1994: low incidence in areas with highest population density and most household crowding. Northern Ireland Diabetes Study Group. Diabetologia 39, 1063–1069 (1996)

    Article  CAS  PubMed  Google Scholar 

  42. Tuomilehto, J. et al. Epidemiology of childhood diabetes mellitus in Finland—background of a nationwide study of type 1 (insulin-dependent) diabetes mellitus. The Childhood Diabetes in Finland (DiMe) Study Group. Diabetologia 35, 70–76 (1992)

    Article  CAS  PubMed  Google Scholar 

  43. Mein, C. A. et al. Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res. 10, 330–343 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olivier, M. et al. High-throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Res. 30, e53 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Clayton, D. in Handbook of Statistical Genetics (eds Balding, D., Bishop, M. & Cannings, C.) 519–540 (Wiley, Chichester, 2001)

    Google Scholar 

  46. Spielman, R., McGinnis, R. & Ewens, W. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Juvenile Diabetes Research Foundation (JDRF), the Wellcome Trust, NovoNordisk, Novo Nordisk Foundation, the Academy of Finland, The Sigrid Juselius Foundation, Diabetes UK and the Medical Research Council for financial support. H.U. was a Wellcome Trust Travelling Fellow and R.N. is a West Midlands Regional Health Authority Sheldon Medical Research Fellow. The availability of NOD congenic mice through the Taconic Farms Emerging Models Program has been made possible and is supported by grants from the Merck Genome Research Institute, NIAID and the JDRF. We gratefully acknowledge the participation of all patients, controls and family members, including provision of samples from T1D families from the Human Biological Data Interchange and Diabetes UK repositories, and sample collections by The Norwegian Study Group for Childhood, preparation of manuscript materials by J. Brown and T. Thorn, and review of the manuscript by C. Rudd, C. Nathan, M. Bobrow, P. Lyons, R. Glynne, C. Goodnow, J. Trowsdale, N. Proudfoot, T. Merriman, N. Hastie and D. Sansom.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linda S. Wicker or John A. Todd.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2003_BFnature01621_MOESM1_ESM.pdf

Supplementary Information A: Description for CD28-CTLA4-ICOS region of (a) genomic informatics methods and results, including human-mouse comparative sequence analysis and gene annotation, (b) details of the single nucleotide polymorphisms – their sequences and genotyping QC results and (c) methods and results from the analysis of the transcription of the CTLA-4 gene. (PDF 370 kb)

41586_2003_BFnature01621_MOESM2_ESM.pdf

Supplementary Information B: Intermarker linkage disequilibrium analysis for the 108 single nucleotide polymorphisms studied in the CD28-CTLA4-ICOS region and a detailed description of the fine mapping approach using logistic regression analyses in Graves’ disease and in type 1 diabetes, including single point and haplotype results. (PDF 210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, H., Howson, J., Esposito, L. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003). https://doi.org/10.1038/nature01621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01621

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing