Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extreme crustal oxygen isotope signatures preserved in coesite in diamond


The anomalously high and low oxygen isotope values observed in eclogite xenoliths from the upper mantle beneath cratons have been interpreted as indicating that the parent rock of the eclogites experienced alteration on the ancient sea floor1. Recognition of this genetic lineage has provided the foundation for a model of the evolution of the continents whereby imbricated slabs of oceanic lithosphere underpin and promote stabilization of early cratons2. Early crustal growth is thought to have been enhanced by the addition of slab-derived magmas, leaving an eclogite residuum in the upper mantle beneath the cratons3. But the oxygen isotope anomalies observed in eclogite xenoliths are small relative to those in altered ocean-floor basalt and intermediate-stage subduction-zone eclogites, and this has hindered acceptance of the hypothesis that the eclogite xenoliths represent subducted and metamorphosed ocean-floor basalts. We present here the oxygen isotope composition of eclogitic mineral inclusions, analysed in situ in diamonds using an ion microprobe/secondary ion mass spectrometer. The oxygen isotope values of coesite (a polymorph of SiO2) inclusions are substantially higher than previously reported for xenoliths from the subcratonic mantle, but are typical of subduction-zone meta-basalts, and accordingly provide strong support for the link between altered ocean-floor basalts and mantle eclogite xenoliths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen isotope compositions of diamond inclusion minerals and of various basaltic rocks.

Similar content being viewed by others


  1. Jagoutz, E., Dawson, J. B., Hoernes, S., Spettel, B. & Wanke, H. Anorthositic oceanic crust in the Archean. Lunar Planet. Sci. 15, 395–396 (1984)

    ADS  Google Scholar 

  2. Helmstaedt, H. & Schulze, D. J. in Kimberlites and Related Rocks Vol. 1 Their Composition, Origin and Emplacement (ed. Ross, J.) 358–368 (Blackwell, Carlton, Australia, 1989)

    Google Scholar 

  3. Rollinson, H. Eclogitic xenoliths in west Africa kimberlites as residues from Archean granitoid crust formation. Nature 389, 173–176 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Ito, E., White, W. M. & Gopel, C. The O, Sr, Nd, and Pb isotope geochemistry of MORB. Chem. Geol. 62, 157–176 (1987)

    Article  ADS  CAS  Google Scholar 

  5. Mattey, D. P., Lowry, D., Macpherson, C. G. & Chazot, G. Oxygen isotope composition of mantle minerals by laser fluorination analysis: homogeneity in peridotites, heterogeneity in eclogites. Mineral. Mag. A 58, 573–574 (1994)

    Article  ADS  Google Scholar 

  6. Garlick, G. D., MacGregor, I. D. & Vogel, D. E. Oxygen isotope ratios in eclogites from kimberlites. Science 172, 1025–1027 (1971)

    Article  ADS  CAS  Google Scholar 

  7. Deines, P., Harris, J. W., Robinson, D. N., Gurney, J. J. & Shee, S. R. Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa, Botswana, and the nitrogen content of their diamonds. Geochim. Cosmochim. Acta 55, 515–524 (1991)

    Article  ADS  CAS  Google Scholar 

  8. Clayton, R. N., Goldsmith, J. R., Karel, K. J., Mayeda, T. K. & Newton, R. P. Limits on the effect of pressure in isotopic fractionation. Geochim. Cosmochim. Acta 39, 1197–1201 (1975)

    Article  ADS  Google Scholar 

  9. MacGregor, I. D. & Manton, W. I. Roberts Victor eclogites: Ancient oceanic crust. J. Geophys. Res. 91, 14063–14079 (1986)

    Article  ADS  CAS  Google Scholar 

  10. Jacob, D., Jagoutz, E., Lowry, D., Mattey, D. & Kudrjavtseva, G. Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust. Geochim. Cosmoschim. Acta 58, 5191–5207 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Pearson, D. G., Davies, G. R., Nixon, P. H., Greenwood, P. G. & Mattey, D. P. Oxygen isotope evidence for the origin of pyroxenites in the Beni Bousera peridotite massif, North Morocco: derivation from subducted oceanic lithosphere. Earth Planet Sci. Lett. 102, 289–301 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Muehlenbachs, K. The alteration and aging of the basaltic layer of the sea floor: oxygen isotope evidence from DSDP/IPOD legs 51, 52, and 53. Init. Rep. DSDP LI–LIII, 1159–1167 (1980)

    Google Scholar 

  13. Staudigel, H., Muehlenbachs, K., Richardson, S. H. & Hart, S. R. Agents of low temperature ocean crust alteration. Contrib. Mineral. Petrol. 77, 150–157 (1981)

    Article  ADS  CAS  Google Scholar 

  14. Cocker, J. D., Griffin, B. J. & Muehlenbachs, K. Oxygen and carbon isotope evidence for seawater-hydrothermal alteration of the Macquarie Island ophiolite. Earth Planet. Sci. Lett. 61, 112–122 (1982)

    Article  ADS  CAS  Google Scholar 

  15. Schiffman, P., Williams, A. E. & Evarts, R. C. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California. Earth Planet. Sci. Lett. 70, 207–220 (1984)

    Article  ADS  CAS  Google Scholar 

  16. Valley, J. W. in Stable Isotopes in High Temperature Geological Processes (eds Valley, J. W., Taylor, H. P. & O'Neil, J. R.) 445–489 (Reviews in Mineralogy No. 16, Mineralogical Society of America, Washington DC, 1986)

    Google Scholar 

  17. Leech, M. L. & Ernst, W. G. Petrotectonic evolution of the high- to ultrahigh-pressure Maksyutov Complex, Karayanova area, south Ural Mountains: structural and oxygen isotope constraints. Lithos 52, 235–252 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Miller, J. A., Cartwright, I., Buick, I. S. & Bairncoat, A. C. An O-isotope profile through the HP-LT Corsican ophiolite, France and its implications for fluid flow during subduction. Chem. Geol. 178, 43–69 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Haggerty, S. E. A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285, 851–860 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Cartigny, P., Harris, J. W. & Javoy, M. in Proc. VIIth Int. Kimberlite Conf. Vol. 1 (eds Gurney, J. J., Gurney, J. L., Pascoe, M. D. & Richardson, S. H.) 117–124 (Red Roof Design, Cape Town, 1999)

    Google Scholar 

  21. Gurney, J. J. in Kimberlites and Related Rocks Vol. 2, Their Mantle/Crust Setting, Diamonds and Diamond Exploration (ed. Ross, J.) 935–965 (Blackwell, Carlton, Australia, 1989)

    Google Scholar 

  22. Lowry, D., Mattey, D. P. & Harris, J. W. Oxygen isotope composition of syngenetic inclusions in diamond from the Finsch Mine, RSA. Geochim. Cosmochim. Acta 63, 1825–1836 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Sobolev, N. V., Efimova, E. S., Channer, D. M. de R., Anderson, P. F. N. & Barron, K. M. Unusual upper mantle beneath Guaniamo, Guyana Shield, Venezuela: evidence from diamond inclusions. Geology 26, 971–974 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Kaminsky, F. V., Zakharchenko, O. D., Griffin, W. L., Channer, D. M. de R. & Khachatrayan-Blinova, G. K. Diamond from the Guaniamo area, Venezuela. Can. Mineral. 38, 1347–1370 (2000)

    Article  CAS  Google Scholar 

  25. Eiler, J. M., Graham, C. & Valley, J. W. SIMS analysis of oxygen isotopes: matrix effects in complex minerals and glasses. Chem. Geol. 138, 221–244 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Valley, J. W., Graham, C. M., Harte, B., Eiler, J. M. & Kinny, P. D. in Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks, W. C. III & Ridley, W. I.) 73–98 (SEG Reviews in Economic Geology Vol. 7, Society of Economic Geologists, 1998)

    Google Scholar 

  27. Valley, J. W. & Graham, C. Ion microprobe analysis of oxygen isotope ratios in quartz from Skye granite: healed micro-cracks, fluid flow, and hydrothermal exchange. Contrib. Mineral. Petrol. 124, 225–234 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Spicuzza, M. J., Valley, J. W., Kohn, M. J., Girrard, J. P. & Fouillac, A. M. The rapid heating, defocused beam technique: A CO2-laser based method for highly precise and accurate determination of δ18O values of quartz. Chem. Geol. 144, 195–203 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Valley, J. W., Bindeman, I. N. & Peck, W. H. Empirical calibration of oxygen isotope fractionation in zircon. Geochim. Cosmochim. Acta (in the press)

  30. Sharp, Z. D., Essene, E. J. & Smyth, J. R. Ultra-high temperatures from oxygen isotope thermometry of a coesite-sanidine grospydite. Contrib. Mineral. Petrol. 112, 358–370 (1992)

    Article  ADS  CAS  Google Scholar 

  31. Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372 (2002)

    Article  ADS  CAS  Google Scholar 

Download references


We thank J. Craven for invaluable technical assistance with the ion microprobe. We also thank R. Cooper for access to the diamonds, N. Cayzer for assistance with general scanning electron microscopy work and electron backscatter diffraction determinations on the coesite, M. Spicuzza for assistance in laser fluorination and mass spectrometry, B. Schumacher and associates for polishing the diamonds, A. Dias for help with the figure, H. Halls for discussion, and G. Ernst for comments and suggestions on the manuscript. D.J.S. and J.M.B. are supported by NSERC, and J.W.V. by NSF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel J. Schulze.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, D., Harte, B., Valley, J. et al. Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature 423, 68–70 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing