Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002


Observations of the afterglows of γ-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy1,2. The nature of the central engine that powers these events and the prompt γ-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt γ-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the γ-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: RHESSI light curves (in total measured counts) in three energy bins for GRB21206.
Figure 2: The azimuthal scatter distribution for the RHESSI data, corrected for spacecraft rotation.


  1. Mészáros, P. Theories of gamma-ray bursts. Annu. Rev. Astron. Astrophys. 40, 137–169 (2002)

    Article  ADS  Google Scholar 

  2. van Paradijs, J., Kouveliotou, C. & Wijers, R. A. M. J. Gamma-ray burst afterglows. Annu. Rev. Astron. Astrophys. 38, 379–425 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Lin, R. P. et al. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) mission. Sol. Phys. (in the press)

  4. Novick, R. Stellar and solar X-ray polarimetry. Space Sci. Rev. 18, 389–408 (1975)

    Article  ADS  Google Scholar 

  5. Lei, F., Dean, A. J. & Hills, A. G. Compton polarimetry in gamma-ray astronomy. Space Sci. Rev. 82, 309–388 (1997)

    Article  ADS  CAS  Google Scholar 

  6. McConnell, M. et al. in Gamma Ray Bursts, 3rd Huntsville Symposium (eds Kouveliotou, C., Briggs, M. F. & Fishman, G. J.) AIP Conf. Proc. 384, 851–855 (1996)

    Google Scholar 

  7. Hurley, K. et al. GCN Circ. 1727 (2002)

  8. Hurley, K. et al. GCN Circ. 1728 (2002)

  9. Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics 180–181 (JWS, New York, 1979)

    Google Scholar 

  10. Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks—a theory of cosmic-ray origin. Phys. Rep. 154, 1–75 (1987)

    Article  ADS  CAS  Google Scholar 

  11. Frail, D. A., Waxman, E. & Kulkarni, S. R. A 450 day light curve of the radio afterglow of GRB 970508: fireball calorimetry. Astrophys. J. 537, 191–204 (2000)

    Article  ADS  Google Scholar 

  12. Freedman, D. & Waxman, E. On the energy of gamma-ray bursts. Astrophys. J. 547, 922–928 (2001)

    Article  ADS  Google Scholar 

  13. Derishev, E. V., Kocharovsky, V. V. & Kocharovsky, Vl. V. Physical parameters and emission mechanism in gamma-ray bursts. Astron. Astrophys. 372, 1071–1077 (2001)

    Article  ADS  Google Scholar 

  14. Guetta, D., Spada, M. & Waxman, E. Efficiency and spectrum of internal gamma-ray burst shocks. Astrophys. J. 557, 399–407 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Covino, S. et al. GRB 990510: linearly polarized radiation from a fireball. Astron. Astrophys. 348, L1–L4 (1999)

    ADS  CAS  Google Scholar 

  16. Wijers, R. A. M. J. et al. Detection of polarization in the afterglow of GRB 990510 with the ESO Very Large Telescope. Astrophys. J. 523, L33–L36 (1999)

    Article  ADS  Google Scholar 

  17. Rol, E. et al. GRB 990712: first indication of polarization variability in a gamma-ray burst afterglow. Astrophys. J. 544, 707–711 (2000)

    Article  ADS  Google Scholar 

  18. Bersier, D. et al. The strongly polarized afterglow of GRB 020405. Astrophys. J. 583, L63–L66 (2003)

    Article  ADS  Google Scholar 

  19. Waxman, E. γ-ray burst afterglow: confirming the cosmological fireball model. Astrophys. J. 489, L33–L36 (1997)

    Article  ADS  Google Scholar 

  20. Galama, T. J. et al. The effect of magnetic fields on γ–ray bursts inferred from multi-wavelength observations of the burst of 23 January 1999. Nature 398, 394–399 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Medvedev, M. K. & Loab, A. Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526, 697–706 (1999)

    Article  ADS  Google Scholar 

  22. Sari, R., Narayan, R. & Piran, T. Cooling timescales and temporal structure of gamma-ray bursts. Astrophys. J. 473, 204–218 (1996)

    Article  ADS  Google Scholar 

  23. Gruzinov, A. & Waxman, E. Gamma-ray burst afterglow: polarization and analytic light curves. Astrophys. J. 511, 852–861 (1999)

    Article  ADS  Google Scholar 

  24. Rees, M. J. & Mészáros, P. Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. 430, L93–L96 (1994)

    Article  ADS  Google Scholar 

  25. Spruit, H. C., Daigne, F. & Drenkhahn, G. Large scale magnetic fields and their dissipation in GRB fireballs. Astron. Astrophys. 369, 694–705 (2001)

    Article  ADS  Google Scholar 

  26. Thompson, C. A model of gamma-ray bursts. Mon. Not. R. Astron. Soc. 270, 480–498 (1994)

    Article  ADS  CAS  Google Scholar 

  27. Mészáros, P. & Rees, M. J. Poynting jets from black holes and cosmological gamma-ray bursts. Astrophys. J. 482, L29–L32 (1997)

    Article  ADS  Google Scholar 

  28. Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977)

    Article  ADS  Google Scholar 

  29. Usov, V. V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature 357, 472–474 (1992)

    Article  ADS  Google Scholar 

  30. Gruzinov, A. Gamma-ray burst phenomenology, shock dynamo, and the first magnetic fields. Astrophys. J. 563, L15–L18 (2001)

    Article  ADS  Google Scholar 

Download references


We thank D. Smith for help in learning RHESSI data analysis and providing simulation support, K. Hurley for IPN data and references, R. Lin, E. Quataert, J. Arons, C. Matzner and I. Fisk for discussions, and especially the RHESSI team for making all of their data immediately available to the public at 〈〉.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steven E. Boggs.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coburn, W., Boggs, S. Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002. Nature 423, 415–417 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing