Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal scaling relations in food webs

Abstract

The structure of ecological communities is usually represented by food webs1,2,3. In these webs, we describe species by means of vertices connected by links representing the predations. We can therefore study different webs by considering the shape (topology) of these networks4,5. Comparing food webs by searching for regularities is of fundamental importance, because universal patterns would reveal common principles underlying the organization of different ecosystems. However, features observed in small food webs1,2,3,6 are different from those found in large ones7,8,9,10,11,12,13,14,15. Furthermore, food webs (except in isolated cases16,17) do not share18,19 general features with other types of network (including the Internet, the World Wide Web and biological webs). These features are a small-world character4,5 and a scale-free (power-law) distribution of the degree4,5 (the number of links per vertex). Here we propose to describe food webs as transportation networks20 by extending to them the concept of allometric scaling20,21,22 (how branching properties change with network size). We then decompose food webs in spanning trees and loop-forming links. We show that, whereas the number of loops varies significantly across real webs, spanning trees are characterized by universal scaling relations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Computation of Ai and Ci from a spanning tree of the food web.
Figure 2: Scaling of C against A.

References

  1. 1

    Lawton, J. H. in Ecological Concepts (ed. Cherret, J. M.) 43–78 (Blackwell Scientific, Oxford, 1989)

    Google Scholar 

  2. 2

    Pimm, S. L. Food Webs (Chapman & Hall, London, 1982)

    Book  Google Scholar 

  3. 3

    Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory Biomathematics 20 (Springer, Berlin, 1990)

    Book  Google Scholar 

  4. 4

    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Cohen, J. E. Ecologists' Co-Operative Web Bank 1.00 (The Rockfeller Univ., New York, 1989)

    Google Scholar 

  7. 7

    Goldwasser, L. & Roughgarden, J. Construction and analysis of a large Caribbean food web. Ecology 74, 1216–1233 (1993)

    Article  Google Scholar 

  8. 8

    Christian, R. R. & Luczkovich, J. J. Organizing and understanding a winter's seagrass foodweb network through effective trophic levels. Ecol. Mod. 117, 99–124 (1999)

    Article  Google Scholar 

  9. 9

    Martinez, N. D., Hawkins, B. A., Dawah, H. A. & Feifarek, B. P. Effects of sampling effort on the characterization of food web structure. Ecology 80, 1044–1055 (1999)

    Article  Google Scholar 

  10. 10

    Memmott, J., Martinez, N. D. & Cohen, J. E. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural web. J. Anim. Ecol. 69, 1–15 (2000)

    Article  Google Scholar 

  11. 11

    Hall, S. J. & Raffaelli, D. Food web patterns: lessons from a species-rich web. J. Anim. Ecol. 60, 823–842 (1991)

    Article  Google Scholar 

  12. 12

    Martinez, N. D. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol. Monogr. 61, 367–392 (1991)

    Article  Google Scholar 

  13. 13

    Huxham, M., Beaney, S. & Raffaelli, D. Do parasites reduce the chances of triangulation in a real food web? Oikos 76, 284–300 (1996)

    Article  Google Scholar 

  14. 14

    Polis, G. A. Complex trophic interactions in deserts: an empirical critique of food web theory. Am. Nat. 138, 123–155 (1991)

    Article  Google Scholar 

  15. 15

    Warren, P. H. Spatial and temporal variation in the structure of a freshwater food web. Oikos 55, 299–311 (1989)

    Article  Google Scholar 

  16. 16

    Montoya, J. M. & Solé, R. V. Small world patterns in food webs. J. Theor. Biol. 214, 405–412 (2002)

    Article  Google Scholar 

  17. 17

    Williams, R. J., Berlow, E. L., Dunne, J. A. & Barabási, A.-L. Two degrees of separation in complex food webs. Proc. Natl Acad. Sci. USA 99, 12913–12916 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Camacho, J., Guimerà, R. & Amaral, L. A. N. Robust patterns in food web structure. Phys. Rev. Lett. 88, 228102 (2002)

    ADS  Article  Google Scholar 

  19. 19

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks. Nature 399, 130–132 (1999)

    ADS  CAS  Article  Google Scholar 

  21. 21

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997)

    CAS  Article  Google Scholar 

  22. 22

    West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  23. 23

    Caldarelli, G., Higgs, P. G. & McKane, A. J. Modelling coevolution in multispecies communities. J. Theor. Biol. 193, 345–358 (1998)

    CAS  Article  Google Scholar 

  24. 24

    Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self-Organization (Cambridge Univ. Press, Cambridge, 1996)

    Google Scholar 

  26. 26

    McMahon, T. A. & Bonner, J. T. On Size and Life (Scientific American Library, New York, 1983)

    Google Scholar 

  27. 27

    Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992)

    Article  Google Scholar 

  28. 28

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002)

    Article  Google Scholar 

  29. 29

    Cousins, S. H. Species diversity measurements: choosing the right index. Trends Ecol. Evol. 6, 190–192 (1991)

    CAS  Article  Google Scholar 

  30. 30

    Drossel, B., Higgs, P. G. & McKane, A. J. The influence of predator–prey population dynamics on the long-term evolution of food web structure. J. Theor. Biol. 208, 91–107 (2001)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the FET Open Project IST-2001-33555 COSIN.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guido Caldarelli.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garlaschelli, D., Caldarelli, G. & Pietronero, L. Universal scaling relations in food webs. Nature 423, 165–168 (2003). https://doi.org/10.1038/nature01604

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing