Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular motors

Abstract

Life implies movement. Most forms of movement in the living world are powered by tiny protein machines known as molecular motors. Among the best known are motors that use sophisticated intramolecular amplification mechanisms to take nanometre steps along protein tracks in the cytoplasm. These motors transport a wide variety of cargo, power cell locomotion, drive cell division and, when combined in large ensembles, allow organisms to move. Motor defects can lead to severe diseases or may even be lethal. Basic principles of motor design and mechanism have now been derived, and an understanding of their complex cellular roles is emerging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative cytoskeletal motors.
Figure 2: Schematic rendition of the intramolecular communication within one motor domain each of myosin, kinesin and dynein, and translation into a conformational change that leads to movement.
Figure 3: Types of motor-cargo linkage.
Figure 4: Schematic overview of the dynein–dynactin complex.
Figure 5: Role of cytoskeletal motors beyond membrane transport.

Similar content being viewed by others

References

  1. Schliwa, M. (ed.) Molecular Motors (VCH-Wiley, Weinheim, 2003).

    Google Scholar 

  2. Vale, R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Kosztin, I., Bruinsma, R., O'Lague, P. & Schulten, K. Mechanical force generation by G proteins. Proc. Natl Acad. Sci. USA 99, 3575–3580 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yun, M., Zhang, X., Park, C. G., Park, H. W. & Endow, S. A. A structural pathway for activation of the kinesin motor ATPase. EMBO J. 20, 2611–2618 (2000).

    Article  Google Scholar 

  5. Murphy, C. T., Rock, R. S. & Spudich, J. A. A myosin II mutation uncouples ATPase activity from motility and shortens step size. Nature Cell Biol. 3, 311–315 (2002).

    Article  CAS  Google Scholar 

  6. Geeves, M. A. & Holmes, K. C. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Houdusse, A., Szent-Gyorgyi, A. G. & Cohen, C. Three conformational states of scallop myosin S1. Proc. Natl Acad. Sci. USA 21, 11238–11243 (2000).

    Article  ADS  Google Scholar 

  8. Spudich, J. A. The myosin swinging cross-bridge model. Nature Rev. Mol. Cell Biol. 2, 387–392 (2001).

    Article  CAS  Google Scholar 

  9. Ruff, C., Furch, M., Brenner, B., Manstein, D. J. & Meyhofer, E. Single-molecule tracking of myosins with genetically engineered amplifier domains. Nature Struct. Biol. 8, 226–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Schott, D. H., Collins, R. N. & Bretscher, A. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J. Cell Biol. 156, 35–39 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Kikkawa, M., Okada, Y. & Hirokawa, N. 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell 100, 241–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Vale, R. D. & Milligan R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Koonce, M. P. & Tikhonenko, I. Functional elements within the dynein microtubule-binding domain. Mol. Biol. Cell 11, 523–529 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

  16. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Hua, W., Chung, J. & Gelles, J. Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295, 844–848 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kozielski, F. et al. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kallipolitou, A. et al. Unusual properties of the fungal conventional kinesin neck domain from Neurospora crassa. EMBO J. 20, 6226–6235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tomishige, M. & Vale, R. D. Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change. J. Cell Biol. 151, 1081–1092 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl Acad. Sci. USA 97, 9482–9486 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M. & Sweeney, H. L. The kinetic mechanism of myosin V. Proc. Natl Acad. Sci. USA 96, 13726–13731 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R. & Molloy, J. E. The gated gait of the processive molecular motor, myosin V. Nature Cell Biol. 4, 59–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Rock, R. S. et al. Myosin VI is a processive motor with a large step size. Proc. Natl Acad. Sci. USA 98, 13655–13659 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walker, M. L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Okada,Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Inoue, A., Saito, J., Ikebe, R. & Ikebe, M. Myosin IXb is a single-headed minus-end-directed processive motor. Nature Cell Biol. 4, 302–306 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Sakakibara, H., Kojima, H., Saka,i Y., Katayama, E. & Oiwa, K. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl Acad. Sci. USA 97, 640–645 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thorn, K. S., Ubersax, J. A. & Vale, R. D. Engineering the processive run length of the kinesin motor. J. Cell Biol. 151, 1093–1100 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rogers, K. R. et al. KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry. EMBO J. 20, 5101–5113 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Sablin, E. P. et al. Direction determination in the minus-end-directed kinesin motor ncd. Nature 395, 813–816 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Endow, S. A. Determinants of molecular motor directionality. Nature Cell Biol. 1, E163–E167 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Endow, S. A. & Higuchi, H. A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406, 913–916 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Wells, A. L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Homma, K., Yoshimura, M., Saito, J., Ikebe, R. & Ikebe, M. The core of the motor domain determines the direction of myosin movement. Nature 412, 831–834 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, MA, 2001).

    Google Scholar 

  39. Schnitzer, M. J., Visscher, K. & Block, S. M. Force production by single kinesin motors. Nature Cell Biol. 2, 718–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Lang, M. J., Asbury, C. L., Shaevitz, J. W. & Block, S. M. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83, 491–501 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang, N., Lin, T. & Ostap, E. M. Dynamics of myo1c (myosin-I β) lipid binding and dissociation. J. Biol. Chem. (2002).

  42. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. Role of phosphatidylinositol(4,5)bis-phosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamal, A. et al. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643–648 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Bowman, A. B. et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 10, 583–594 (2000).

    Article  Google Scholar 

  46. Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959–970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Terada, S. & Hirokawa, N. Moving on to the cargo problem of microtubule-dependent motors in neurons. Curr. Opin. Neurobiol. 10, 566–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, X. S. et al. Identification of an organelle receptor for myosin-Va. Nature Cell Biol. 4, 271–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Hammer, J. A. III & Wu, X. S. Rabs grab motors: defining the connections between Rab GTPases and motor proteins. Curr. Opin. Cell Biol. 14, 69–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Holleran, E. A., Karki, S. & Holzbaur, E. L. The role of the dynactin complex in intracellular motility. Int. Rev. Cytol. 18, 69–109 (1998).

    Article  Google Scholar 

  51. Muresan, V. et al. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell 7, 173–183 (2001).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  52. Karcher, R. L. et al. Cell cycle regulation of myosin-V by calcium/calmodulin-dependent protein kinase II. Science 293, 1317–1320 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Addinall, S. G. et al. Phosphorylation by cdc2-cyclinB1 kinase releases cytoplasmic dynein from membranes. J. Biol. Chem. 276, 15939–15944 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S. T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin's tail domain is an inhibitory regulator of the motor domain. Nature Cell Biol. 1, 288–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol. 1, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Seiler, S. et al. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nature Cell Biol. 2, 333–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Hackney, D. D. & Stock, M. F. Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP release. Nature Cell Biol. 2, 257–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Brown, S. S. Cooperation between microtubule- and actin-based motor proteins. Annu. Rev. Cell Dev. Biol. 15, 63–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156, 855–865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, X. S. et al. Identification of an organelle receptor for myosin-Va. Nature Cell Biol. 4, 271–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Bridgman, P. C. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J. Cell Biol. 146, 1045–1060 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang, J. D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Jansen, R. P. mRNA localization: message on the move. Nature Rev. Mol. Cell Biol. 2, 247–256 (2001).

    Article  CAS  Google Scholar 

  65. Kiebler, M. A. & DesGroseillers, L. Molecular insights into mRNA transport and local translation in the mammalian nervous system. Neuron 25, 19–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Stebbings, H. Cytoskeleton-dependent transport and localization of mRNA. Int. Rev. Cytol. 211, 1–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Brendza, R. P., Serbus, L. R., Duffy, J. B. & Saxton, W. M. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120–2122 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cha, B. J., Koppetsch, B. S. & Theurkauf, W. E. In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106, 35–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Schnorrer,F., Bohmann, K. & Nüsslein-Volhard, C. The molecular motor dynein is involved in targeting swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nature Cell Biol. 2, 185–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Supp, D. M., Witte, D. P., Potter, S. S. & Brueckner, M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389, 963–966 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. Determination of left–right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96–99 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Karki, S., Ligon, L. A., DeSantis, J., Tokito, M. & Holzbaur, E. L. PLAC-24 is a cytoplasmic dynein-binding protein that is recruited to sites of cell-cell contact. Mol. Biol. Cell 13, 1722–1734 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dujardin, D. L. & Vallee, R. B. Dynein at the cortex. Curr. Opin. Cell Biol. 14, 44–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Helfand, B. T., Mikami, A., Vallee, R. B. & Goldman, R. D. A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J. Cell Biol. 157, 795–806 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shea, T. B. & Flanagan, L. A. Kinesin, dynein and neurofilament transport. Trends Neurosci. 24, 644–648 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Jimbo, T. et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nature Cell Biol. 4, 323–327 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Askham, J. M., Vaughan, K. T., Goodson, H. V. & Morrison, E. E. Evidence that an interaction between EB1 and p150Glued is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13, 3627–3645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lantz, V. A. & Miller, K. G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J. Cell Biol. 140, 897–910 (1999).

    Article  Google Scholar 

  80. Kuriyama, R., Gustus, C., Terada, Y., Uetake, Y. & Matuliene, J. CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J. Cell Biol. 156, 783–790 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Piddini, E., Schmid, J. A., de Martin, R. & Dotti, C. G. The Ras-like GTPase Gem is involved in cell shape remodelling and interacts with the novel kinesin-like protein KIF9. EMBO J. 20, 4076–4087 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Espindola, F. S. et al. The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. Cell Motil. Cytoskel. 47, 269–281 (2000).

    Article  CAS  Google Scholar 

  83. Day, I. S., Miller, C., Golovkin, M. & Reddy, A. S. Interaction of a kinesin-like calmodulin-binding protein with a protein kinase. J. Biol. Chem. 275, 13737–13745 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Zimmerman, W. & Doxsey, S. J. Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles. Traffic 1, 927–934 (2000).

    CAS  PubMed  Google Scholar 

  85. Surrey, T., Nedelec, F., Leibler, S. & Karsenti, E. Physical properties determining self-organization of motors and microtubules. Science 292, 1167–1171 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Humphrey, D., Duggan, C., Saha, D., Smith, D. & Käs, J. Active fluidization of polymer networks through molecular motors. Nature 416, 413–416 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Oppenheimer, J. R. Science and the Common Understanding (Simon & Schuster, 1953).

    Google Scholar 

  88. Seidman, J. G. & Seidman, C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104, 557–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Westbroek, W., Lambert, J. & Naeyaert, J. M. The dilute locus and Griscelli syndrome: gateways towards a better understanding of melanosome transport. Pigment Cell Res. 14, 320–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Avraham, K. B. The genetics of deafness: a model for genomic and biological complexity. Ernst Schering Res. Found. Workshop 36, 271–297 (2002).

    Google Scholar 

  91. Marszalek, J. R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Olbrich, H. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nature Genet. 30, 143–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl Acad. Sci. USA 96, 5043–5048 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qin, H., Rosenbaum, J. L. & Barr, M. M. An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr. Biol. 11, 457–461 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Vallee, R. B., Tai, C. & Faulkner, N. E. LIS1: cellular function of a disease-causing gene. Trends Cell Biol. 11, 155–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Zhao, C. et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 105, 587–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Rietdorf, J. et al. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nature Cell Biol. 3, 992–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Dohner, K. et al. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell 13, 2795–2809 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Watters, J. W., Dewar, K., Lehoczky, J., Boyartchuk, V. & Dietrich, W. F. Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor. Curr. Biol. 11, 1503–1511 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Gunawardena, S. & Goldstein, L. S. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Space limitations imposed a strict limit on the number of references. We apologize to all authors who made significant contributions to the field but whose work is not cited. Our work is supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Schliwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schliwa, M., Woehlke, G. Molecular motors. Nature 422, 759–765 (2003). https://doi.org/10.1038/nature01601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01601

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing