Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing

Abstract

Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin1 is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells1. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: CTG or GAA triplet-repeat expansions confer position-independent variegation on a heterochromatin-sensitive reporter.
Figure 2: Triplet-repeat-associated gene silencing correlated with inaccessible chromatin at the promoter but not the enhancer.
Figure 3: Increased nucleosomal density in triplet-repeat proximal regions.
Figure 4: Triplet-repeat-associated variegation is enhanced by overexpression of HP1β.

References

  1. 1

    Dillon, N. & Festenstein, R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet. 18, 252–258 (2002)

    CAS  Article  Google Scholar 

  2. 2

    Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994)

    CAS  Article  Google Scholar 

  5. 5

    Garrick, D., Fiering, S., Martin, D. I. & Whitelaw, E. Repeat-induced gene silencing in mammals. Nature Genet. 18, 56–59 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Grosveld, F., van Assendelft, G. B., Greaves, D. R. & Kollias, G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975–985 (1987)

    CAS  Article  Google Scholar 

  7. 7

    Festenstein, R. et al. Locus control region function and heterochromatin-induced position effect variegation. Science 271, 1123–1125 (1996)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Milot, E. et al. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87, 105–114 (1996)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Kioussis, D. & Festenstein, R. Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. Curr. Opin. Genet. Dev. 7, 614–619 (1997)

    CAS  Article  Google Scholar 

  10. 10

    Campuzano, V. et al. Friedreich's ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Brook, J. D. et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992)

    CAS  Article  Google Scholar 

  12. 12

    Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Sun, F. L., Cuaycong, M. H. & Elgin, S. C. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol. Cell. Biol. 21, 2867–2879 (2001)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Wang, Y., Amirhaeri, S., Kang, S., Wells, R. D. & Griffith, J. D. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265, 669–671 (1994)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Klesert, T. R., Otten, A. D., Bird, T. D. & Tapscott, S. J. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nature Genet. 16, 402–406 (1997)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Klesert, T. R. et al. Mice deficient in Six5 develop cataracts: Implications for myotonic dystrophy. Nature Genet. 25, 105–109 (2000)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Carango, P., Noble, J. E., Marks, H. G. & Funanage, V. L. Absence of myotonic dystrophy protein kinase (DMPK) mRNA as a result of a triplet repeat expansion in myotonic dystrophy. Genomics 18, 340–348 (1993)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Krahe, R. et al. Effect of myotonic dystrophy trinucleotide repeat expansion on DMPK transcription and processing. Genomics 28, 1–14 (1995)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Davis, B. M., McCurrach, M. E., Taneja, K. L., Singer, R. H. & Housman, D. E. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl Acad. Sci. USA 94, 7388–7393 (1997)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Mankodi, A. et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773 (2000)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Wells, R. D., Collier, D. A., Hanvey, J. C., Shimizu, M. & Wohlrab, F. The chemistry and biology of unusual DNA structures adopted by oligopurine.oligopyrimidine sequences. FASEB J. 2, 2939–2949 (1988)

    CAS  Article  Google Scholar 

  22. 22

    Sakamoto, N., Ohshima, K., Montermini, L., Pandolfo, M. & Wells, R. D. Sticky DNA, a self-associated complex formed at long GAA.TTC repeats in intron 1 of the Frataxin gene, inhibits transcription. J. Biol. Chem. 276, 27171–27177 (2001)

    CAS  Article  Google Scholar 

  23. 23

    Greaves, D. R., Wilson, F., Lang, G. & Kioussis, D. Human CD2 3′-flanking sequences confer high-level T-cell specific position independent gene expression in transgenic mice. Cell 56, 979–986 (1989)

    CAS  Article  Google Scholar 

  24. 24

    Festenstein, R. et al. Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner. Nature Genet. 23, 457–461 (1999)

    CAS  Article  Google Scholar 

  25. 25

    Lake, R. A., Wotton, D. & Owen, M. J. A 3′ transcriptional enhancer regulates tissue-specific expression of the human CD2 gene. EMBO J. 9, 3129–3136 (1990)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nature Genet. 32, 623–626 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293, 2453–2455 (2001)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Hwang, K. K., Eissenberg, J. C. & Worman, H. J. Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc. Natl Acad. Sci. USA 98, 11423–11427 (2001)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209–213 (1995)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Fraser and especially C. Osborne (Babraham Insitute) for help with the RNA FISH; S. Sharghi Namini, S. Uribe Lewis and D. Kazazi for technical assistance; M. Walport, N. Dillon, L. Aragorn and D. Kioussis for critical reading of an earlier version of the manuscript; and M. McCarthy for advice on statistical analysis. A.S. was a Wellcome Travelling Fellow and C.E. a Wellcome Clinical Fellow. This work was supported by the Muscular Dystrophy Campaign (UK), the MRC UK and a EU Framework 5 grant—GeneXtra.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Festenstein.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saveliev, A., Everett, C., Sharpe, T. et al. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422, 909–913 (2003). https://doi.org/10.1038/nature01596

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing