Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of DNA in the nucleosome core

Abstract

The 1.9-Å-resolution crystal structure of the nucleosome core particle containing 147 DNA base pairs reveals the conformation of nucleosomal DNA with unprecedented accuracy. The DNA structure is remarkably different from that in oligonucleotides and non-histone protein–DNA complexes. The DNA base-pair-step geometry has, overall, twice the curvature necessary to accommodate the DNA superhelical path in the nucleosome. DNA segments bent into the minor groove are either kinked or alternately shifted. The unusual DNA conformational parameters induced by the binding of histone protein have implications for sequence-dependent protein recognition and nucleosome positioning and mobility. Comparison of the 147-base-pair structure with two 146-base-pair structures reveals alterations in DNA twist that are evidently common in bulk chromatin, and which are of probable importance for chromatin fibre formation and chromatin remodelling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superhelical path and base-pair-step parameters for NCP147 DNA.
Figure 2: DNA bending in the NCP147 DNA.
Figure 3: Oscillation of the base-pair-tip parameter for NCP147 DNA.
Figure 4: Structural alignments of the histone-fold DNA-binding motifs and bound-phosphate groups.

Similar content being viewed by others

References

  1. van Holde, K. E. in Chromatin (ed. Rich, A.) (Springer, New York, 1988)

    Google Scholar 

  2. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999)

    Article  CAS  Google Scholar 

  3. Elgin, S. C. R. & Workman, J. L. (eds) Chromatin Structure and Gene Expression (Oxford Univ. Press, Oxford, 2000)

  4. Simpson, R. T. Nucleosome positioning: Occurrence, mechanisms, and functional consequences. Prog. Nucleic Acid Res. Mol. Biol. 40, 143–184 (1991)

    Article  CAS  Google Scholar 

  5. Wolffe, A. P. & Kurumizaka, H. The nucleosome: A powerful regulator of transcription. Prog. Nucleic Acid Res. Mol. Biol. 61, 379–422 (1998)

    Article  CAS  Google Scholar 

  6. Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Luger, K., Maeder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769–780 (1992)

    Article  CAS  Google Scholar 

  9. Kornberg, R. D. & Lorch, Y. Chromatin structure and transcription. Annu. Rev. Cell Biol. 8, 563–587 (1992)

    Article  CAS  Google Scholar 

  10. Shimizu, M., Roth, S. Y., Szent-Gyorgyi, C. & Simpson, R. T. Nucleosomes are positioned with base pair precision adjacent to the alpha 2 operator in Saccharomyces cerevisiae. EMBO J. 10, 3033–3041 (1991)

    Article  CAS  Google Scholar 

  11. Flaus, A. & Richmond, T. J. Positioning and stability of nucleosomes on MMTV 3′LTR sequences. J. Mol. Biol. 275, 427–441 (1998)

    Article  CAS  Google Scholar 

  12. Meersseman, G., Pennings, S. & Bradbury, E. M. Mobile nucleosomes—a general behaviour. EMBO J. 11, 2951–2959 (1992)

    Article  CAS  Google Scholar 

  13. Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: A dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995)

    Article  CAS  Google Scholar 

  14. Studitsky, V. M., Kassavetis, G. A., Geiduschek, E. P. & Felsenfeld, G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278, 1960–1963 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Tsukiyama, T. The in vivo functions of ATP-dependent chromatin-remodelling factors. Nature Rev. Mol. Cell Biol. 3, 422–429 (2002)

    Article  CAS  Google Scholar 

  16. Calladine, C. R. & Drew, H. R. Principles of sequence-dependent flexure of DNA. J. Mol. Biol. 192, 907–918 (1986)

    Article  CAS  Google Scholar 

  17. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002)

    Article  CAS  Google Scholar 

  18. Davey, C. A. & Richmond, T. J. DNA-dependent divalent cation binding in the nucleosome core particle. Proc. Natl Acad. Sci. USA 99, 11169–11175 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Crick, F. H. C. & Klug, A. Kinky helix. Nature 255, 530–533 (1975)

    Article  ADS  CAS  Google Scholar 

  20. El Hassan, M. A. & Calladine, C. R. Conformational characteristics of DNA: Empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Phil. Trans. R. Soc. Lond. A 355, 43–100 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Lavery, R. & Sklenar, H. The definition of generalised helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynam. 6, 63–91 (1988)

    Article  CAS  Google Scholar 

  22. Young, M. A., Ravishanker, G., Beveridge, D. L. & Berman, H. M. Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA–protein complexes. Biophys. J. 68, 2454–2468 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Olson, W. K. Simulating DNA at low resolution. Curr. Opin. Struct. Biol. 6, 242–256 (1996)

    Article  CAS  Google Scholar 

  24. Dickerson, R. E. DNA bending: The prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926 (1998)

    Article  CAS  Google Scholar 

  25. Goodsell, D. S. & Dickerson, R. E. Bending and curvature calculations in B-DNA. Nucleic Acids Res. 22, 5497–5503 (1994)

    Article  CAS  Google Scholar 

  26. El Hassan, M. A. & Calladine, C. R. Two distinct modes of protein-induced bending in DNA. J. Mol. Biol. 282, 331–343 (1998)

    Article  CAS  Google Scholar 

  27. Packer, M. J. & Hunter, C. A. Sequence–structure relationships in DNA oligomers: A computational approach. J. Am. Chem. Soc. 123, 7399–7406 (2001)

    Article  CAS  Google Scholar 

  28. Yanagi, K., Prive, G. G. & Dickerson, R. E. Analysis of local helix geometry in three B-DNA decamers and eight dodecamers. J. Mol. Biol. 217, 201–214 (1991)

    Article  CAS  Google Scholar 

  29. Shrader, T. E. & Crothers, D. M. Effects of DNA sequence and histone–histone interactions on nucleosome placement. J. Mol. Biol. 216, 69–84 (1990)

    Article  CAS  Google Scholar 

  30. Anselmi, C., Bocchinfuso, G., De Santis, P., Savino, M. & Scipioni, A. Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J. Mol. Biol. 286, 1293–1301 (1999)

    Article  CAS  Google Scholar 

  31. Dickerson, R. E. & Chiu, T. K. Helix bending as a factor in protein/DNA recognition. Biopolymers 44, 361–403 (1997)

    Article  CAS  Google Scholar 

  32. Packer, M. J. & Hunter, C. A. Sequence-dependent DNA structure: The role of the sugar-phosphate backbone. J. Mol. Biol. 280, 407–420 (1998)

    Article  CAS  Google Scholar 

  33. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. J. Biol. Chem. 257, 14686–14707 (1982)

    CAS  PubMed  Google Scholar 

  34. Olson, W. K., Gorin, A. A., Lu, X. J., Hock, L. M. & Zhurkin, V. B. DNA sequence-dependent deformability deduced from protein–DNA crystal complexes. Proc. Natl Acad. Sci. USA 95, 11163–11168 (1998)

    Article  ADS  CAS  Google Scholar 

  35. Travers, A. A. & Klug, A. The bending of DNA in nucleosomes and its wider implications. Phil. Trans. R. Soc. Lond. B 317, 537–561 (1987)

    Article  ADS  CAS  Google Scholar 

  36. Richmond, T. J. & Widom, J. in Chromatin Structure and Gene Expression (eds Elgin, S. C. R. & Workman, J. L.) 1–23 (Oxford Univ. Press, Oxford, 2000)

    Google Scholar 

  37. Widom, J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34, 269–324 (2001)

    Article  CAS  Google Scholar 

  38. Zivanovic, Y., Goulet, I., Revet, B., Le Bret, M. & Prunell, A. Chromatin reconstitution on small DNA rings II. DNA supercoiling on the nucleosome. J. Mol. Biol. 200, 267–290 (1988)

    Article  CAS  Google Scholar 

  39. Klug, A. & Lutter, L. C. The helical periodicity of DNA on the nucleosome. Nucleic Acids Res. 9, 4267–4283 (1981)

    Article  CAS  Google Scholar 

  40. Arnott, S., Dover, S. D. & Wonacott, A. J. Least-squares refinement of the crystal and molecular structures of DNA and RNA from X-ray data and standard bond lengths and angles. Acta Crystallogr. B 25, 2192–2206 (1969)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Berger and D. Sargent for comments on the manuscript. This study was supported by the Swiss National Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Richmond.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1: Schematic diagrams of base-pair and base-pair-step parameters (JPG 45 kb)

41586_2003_BFnature01595_MOESM2_ESM.doc

Supplementary Methods: Calculation of DNA curvature, base pair and base-pair-step parameters, and backbone geometry. (DOC 28 kb)

Supplementary Information: Comparison of mean roll angles for NCP147 and oligonucleotide DNA. (DOC 28 kb)

41586_2003_BFnature01595_MOESM4_ESM.doc

Supplementary Tables: 1.) DNA mean conformational parameters. 2.) Principle components of DNA conformational parameters. 3.) Deviation of DNA phosphate group position for homologous histone motifs. (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richmond, T., Davey, C. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003). https://doi.org/10.1038/nature01595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01595

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing