Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells


A central issue in stem cell biology is to understand the mechanisms that regulate the self-renewal of haematopoietic stem cells (HSCs), which are required for haematopoiesis to persist for the lifetime of the animal1. We found that adult and fetal mouse and adult human HSCs express the proto-oncogene Bmi-1. The number of HSCs in the fetal liver of Bmi-1-/- mice2 was normal. In postnatal Bmi-1-/- mice, the number of HSCs was markedly reduced. Transplanted fetal liver and bone marrow cells obtained from Bmi-1-/- mice were able to contribute only transiently to haematopoiesis. There was no detectable self-renewal of adult HSCs, indicating a cell autonomous defect in Bmi-1-/- mice. A gene expression analysis revealed that the expression of stem cell associated genes3, cell survival genes, transcription factors, and genes modulating proliferation including p16Ink4a and p19Arf was altered in bone marrow cells of the Bmi-1-/- mice. Expression of p16Ink4a and p19Arf in normal HSCs resulted in proliferative arrest and p53-dependent cell death, respectively. Our results indicate that Bmi-1 is essential for the generation of self-renewing adult HSCs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Analysis of adult HSCs.
Figure 2: Analysis of fetal liver haematopoietic stem cells in Bmi-1+/+, Bmi-1+/- and Bmi-1-/- mice.
Figure 3: Regulation of gene expression by Bmi-1.
Figure 4: Effects of p16Ink4a and p19Arf on HSC proliferation.
Figure 5: Proposed model for the role of Bmi-1 in HSC maintenance.


  1. Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994)

    CAS  PubMed  Google Scholar 

  2. van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769 (1994)

    CAS  PubMed  Google Scholar 

  3. Ramalho-Santos, M. et al. ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002)

    ADS  CAS  PubMed  Google Scholar 

  4. Park, I.-K. et al. Molecular cloning and characterization of a novel regulator of G-protein signaling from mouse hematopoietic stem cells. J. Biol. Chem. 276, 915–923 (2001)

    CAS  PubMed  Google Scholar 

  5. Park, I. K. et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 99, 488–498 (2002)

    CAS  PubMed  Google Scholar 

  6. Lessard, J., Baban, S. & Sauvageau, G. Stage-specific expression of Polycomb group genes in human bone marrow cells. Blood 91, 1216–1224 (1999)

    Google Scholar 

  7. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998)

    ADS  CAS  PubMed  Google Scholar 

  8. van der Lugt, N. M. T., Alkema, M., Berns, A. & Deschamps, J. The Polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. Mech. Dev. 58, 153–164 (1996)

    CAS  PubMed  Google Scholar 

  9. Akashi, K. et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101, 383–389 (2003)

    CAS  PubMed  Google Scholar 

  10. Morrison, S., Hemmati, H., Wandycz, A. & Weissman, I. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wright, D. E. et al. Hematopoietic stem cells are uniquely selective in their migratory reponse to chemokines. J. Exp. Med. 195, 1145–1154 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahmoudi, T. & Verrijzer, C. P. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene 20, 3055–3066 (2001)

    CAS  PubMed  Google Scholar 

  13. Weber, J. D. et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999)

    ADS  CAS  Article  PubMed  Google Scholar 

  14. Jacob, J. et al. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999)

    ADS  Google Scholar 

  15. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumour suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 84, 993–1000 (1995)

    Google Scholar 

  16. Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp. Hematol. 29, 1125–1134 (2002)

    Google Scholar 

  17. Lawrence, H. J. et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 89, 1922–1930 (1997)

    CAS  PubMed  Google Scholar 

  18. Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA 98, 14541–14546 (2001)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumour suppression pathways. Cell 92, 725–734 (1998)

    CAS  Article  PubMed  Google Scholar 

  20. Shivdasani, R., Mayer, E. & Orkin, S. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995)

    ADS  CAS  PubMed  Google Scholar 

  21. Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57 (1996)

    CAS  PubMed  Google Scholar 

  22. Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45 (2002)

    CAS  PubMed  Google Scholar 

  23. Domen, J., Cheshier, S. H. & Weissman, I. L. The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of BCL-2 increases both their number and repopulation potential. J. Exp. Med. 191, 253–264 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nichogiannopoulou, A. et al. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190, 1201–1214 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fisher, R. C., Lovelock, J. D. & Scott, E. W. A critical role for PU.1 in homing and long-term engraftment by hematopoietic stem cells in the bone marrow. Blood 94, 1283–1290 (1999)

    CAS  PubMed  Google Scholar 

  26. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000)

    ADS  CAS  PubMed  Google Scholar 

  27. Ohta, H. et al. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J. Exp. Med. 195, 759–770 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pear, W., Nolan, G., Scott, M. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl Acad. Sci. U.S.A. 90, 8392–8396 (1993)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cotta, C., Swindle, C., Weissman, I. L. & Klug, C. A. Retroviral Transduction of FACS-Purified Hematopoietic Stem Cells (eds Klug, C. A. & Jordan, C. T.) 243–252 (Humana Press, Totowa, New Jersey, 2001)

    Google Scholar 

  30. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature advance online publication, 20 April 2003 (doi: 10.1038/nature01572)

Download references


We thank T. Magnuson and C. Klug for providing Bmi-1+/- mice and the MSCV plasmid, respectively; and the Flow Cytometry Core and the Microarray Core at the University of Michigan for their work. The Microarray Core is supported in part by a University of Michigan's Cancer Center Support Grant from the NIH. This work is supported by grants from the NIH.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael F. Clarke.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, Ik., Qian, D., Kiel, M. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing