Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments

Abstract

Homologous recombination is a ubiquitous process with key functions in meiotic and vegetative cells for the repair of DNA breaks. It is initiated by the formation of single-stranded DNA on which recombination proteins bind to form a nucleoprotein filament that is active in searching for homology, in the formation of joint molecules and in the exchange of DNA strands1. This process contributes to genome stability but it is also potentially dangerous to cells if intermediates are formed that cannot be processed normally and thus are toxic or generate genomic rearrangements. Cells must therefore have developed strategies to survey recombination and to prevent the occurrence of such deleterious events. In Saccharomyces cerevisiae, genetic data have shown that the Srs2 helicase negatively modulates recombination2,3, and later experiments suggested that it reverses intermediate recombination structures4,5,6,7. Here we show that DNA strand exchange mediated in vitro by Rad51 is inhibited by Srs2, and that Srs2 disrupts Rad51 filaments formed on single-stranded DNA. These data provide an explanation for the anti-recombinogenic role of Srs2 in vivo and highlight a previously unknown mechanism for recombination control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification, ATPase and helicase activities of Srs2.
Figure 2: Srs2 inhibits DNA strand exchange catalysed by Rad51.
Figure 3: Disruption of Rad51 presynaptic filament by Srs2 as examined by electron microscopy.

Similar content being viewed by others

References

  1. Sung, P., Trujillo, K. M. & Van Komen, S. Recombination factors of Saccharomyces cerevisiae. Mutat. Res. 451, 257–275 (2000)

    Article  CAS  Google Scholar 

  2. Aguilera, A. & Klein, H. L. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119, 779–790 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aboussekhra, A. et al. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17, 7211–7219 (1989)

    Article  CAS  Google Scholar 

  4. Kaytor, M. D., Nguyen, M. & Livingston, D. M. The complexity of the interaction between RAD52 and SRS2. Genetics 140, 1441–1442 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Milne, G. T., Ho, T. & Weaver, D. T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139, 1189–1199 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schild, D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140, 115–127 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chanet, R., Heude, M., Adjiri, A., Maloisel, L. & Fabre, F. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol. 16, 4782–4789 (1996)

    Article  CAS  Google Scholar 

  8. Fabre, F., Chan, A., Heyer, W. D. & Gangloff, S. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl Acad. Sci. USA 99, 1687–1692 (2002)

    Article  Google Scholar 

  9. Klein, H. L. Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Δ with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157, 557–565 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Singleton, M. R. & Wigley, D. B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriol. 184, 1819–1826 (2002)

    Article  CAS  Google Scholar 

  11. Rong, L. & Klein, H. L. Purification and characterization of the Srs2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268, 1252–1259 (1993)

    CAS  PubMed  Google Scholar 

  12. Petukhova, G., Stratton, S. & Sung, P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91–94 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Krejci, L. et al. DNA helicase Srs2 disrupts formation of the Rad51 presynaptic filament. Nature 423, 305–309 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Aboussekhra, A., Chanet, R., Adjiri, A. & Fabre, F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12, 3224–3234 (1992)

    Article  CAS  Google Scholar 

  15. Lovett, S. T. & Mortimer, R. K. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics 116, 547–553 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaze, M. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10, 373 (2002)

    Article  CAS  Google Scholar 

  17. Palladino, F. & Klein, H. L. Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 132, 23–37 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Heude, M., Chanet, R. & Fabre, F. Regulation of the Saccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation. Mol. Gen. Genet. 248, 59–68 (1995)

    Article  CAS  Google Scholar 

  19. Van Komen, S., Petukhova, G., Sigurdsson, S., Stratton, S. & Sung, P. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol. Cell 6, 563–572 (2000)

    Article  CAS  Google Scholar 

  20. Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet. 25, 192–194 (2000)

    Article  CAS  Google Scholar 

  21. van Brabant, A. J., Stan, R. & Ellis, N. A. DNA helicases, genomic instability, and human genetic disease. Annu. Rev. Genomics Hum. Genet. 1, 409–459 (2000)

    Article  CAS  Google Scholar 

  22. Saintigny, Y., Makienko, K., Swanson, C., Emond, M. J. & Monnat, R. J. Jr Homologous recombination resolution defect in Werner syndrome. Mol. Cell. Biol. 22, 6971–6978 (2002)

    Article  CAS  Google Scholar 

  23. Iggo, R. D. & Lane, D. P. Nuclear protein p68 is an RNA-dependent ATPase. EMBO J. 8, 1827–1831 (1989)

    Article  CAS  Google Scholar 

  24. Beloin, C. et al. Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J. Biol. Chem. 278, 5333–5342 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Miccoli, D. Biard and J. Angulo for advice on recombinant baculovirus preparation and protein purification. P. Bertrand and C. Auvin for confirming the identity of Srs2 by MALDI–TOF mass spectrometry, and S. Gangloff, N. Kantake, L. Leloup, L. Maloisel, J. New and T. Robert for comments and discussions. This work was supported by the Commissariat à l'Energie Atomique, the Centre National de la Recherche Scientifique and Électricité de France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xavier Veaute or Francis Fabre.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veaute, X., Jeusset, J., Soustelle, C. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003). https://doi.org/10.1038/nature01585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01585

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing