Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The principle of gating charge movement in a voltage-dependent K+ channel

Abstract

The steep dependence of channel opening on membrane voltage allows voltage-dependent K+ channels to turn on almost like a switch. Opening is driven by the movement of gating charges that originate from arginine residues on helical S4 segments of the protein. Each S4 segment forms half of a ‘voltage-sensor paddle’ on the channel's outer perimeter. Here we show that the voltage-sensor paddles are positioned inside the membrane, near the intracellular surface, when the channel is closed, and that the paddles move a large distance across the membrane from inside to outside when the channel opens. KvAP channels were reconstituted into planar lipid membranes and studied using monoclonal Fab fragments, a voltage-sensor toxin, and avidin binding to tethered biotin. Our findings lead us to conclude that the voltage-sensor paddles operate somewhat like hydrophobic cations attached to levers, enabling the membrane electric field to open and close the pore.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Inhibition of KvAP channels by Fabs and a tarantula venom toxin that bind to the voltage-sensor paddles.
Figure 2: Using avidin and tethered biotin as a molecular ruler to measure positions of the voltage-sensor paddles.
Figure 3: Accessibility of voltage-sensor paddle residues to the internal and external sides of the membrane.
Figure 4: Exposure of the voltage-sensor paddle to the external solution occurs only when the membrane is depolarized.
Figure 5: Positions within the membrane of the voltage-sensor paddles during closed and opened conformations, and a hypothesis for coupling to pore opening.

References

  1. Sigworth, F. J. Voltage gating of ion channels. Q. Rev. Biophys. 27, 1–40 (1994)

    CAS  Article  Google Scholar 

  2. Armstrong, C. M. & Bezanilla, F. Charge movement associated with the opening and closing of the activation gates of the Na+ channels. J. Gen. Physiol. 63, 533–552 (1974)

    CAS  Article  Google Scholar 

  3. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    CAS  Article  Google Scholar 

  4. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003)

    ADS  CAS  Article  Google Scholar 

  5. Ruta, V., Jiang, Y., Lee, A., Chen, J. & MacKinnon, R. Functional analysis of an archeabacterial voltage-dependent K+ channel. Nature 422, 180–185; advance online publication, 2 March 2003 (doi:10.1038/nature01473)

  6. Swartz, K. J. & MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682 (1997)

    CAS  Article  Google Scholar 

  7. Slatin, S. L., Qiu, X. Q., Jakes, K. S. & Finkelstein, A. Identification of a translocated protein segment in a voltage-dependent channel. Nature 371, 158–161 (1994)

    ADS  CAS  Article  Google Scholar 

  8. Qiu, X. Q., Jakes, K. S., Finkelstein, A. & Slatin, S. L. Site-specific biotinylation of colicin Ia. A probe for protein conformation in the membrane. J. Biol. Chem. 269, 7483–7488 (1994)

    CAS  PubMed  Google Scholar 

  9. Qiu, X. Q., Jakes, K. S., Kienker, P. K., Finkelstein, A. & Slatin, S. L. Major transmembrane movement associated with colicin Ia channel gating. J. Gen. Physiol. 107, 313–328 (1996)

    CAS  Article  Google Scholar 

  10. Pugliese, L., Coda, A., Malcovati, M. & Bolognesi, M. Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 Å resolution. J. Mol. Biol. 231, 698–710 (1993)

    CAS  Article  Google Scholar 

  11. Zagotta, W. N., Hoshi, T., Dittman, J. & Aldrich, R. W. Shaker potassium channel gating. II. Transitions in the activation pathway. J. Gen. Physiol. 103, 279–319 (1994)

    CAS  Article  Google Scholar 

  12. Zagotta, W. N., Hoshi, T. & Aldrich, R. W. Shaker potassium channel gating. III. Evaluation of kinetic models for activation. J. Gen. Physiol. 103, 321–362 (1994)

    CAS  Article  Google Scholar 

  13. Schoppa, N. E. & Sigworth, F. J. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J. Gen. Physiol. 111, 313–342 (1998)

    CAS  Article  Google Scholar 

  14. Cole, K. S. & Moore, J. W. Potassium ion current in the squid giant axon: dynamic characteristic. Biophys. J. 1, 1–14 (1960)

    ADS  CAS  Article  Google Scholar 

  15. Schoppa, N. E., McCormack, K., Tanouye, M. A. & Sigworth, F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712–1715 (1992)

    ADS  CAS  Article  Google Scholar 

  16. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    CAS  Article  Google Scholar 

  17. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    CAS  Article  Google Scholar 

  18. Papazian, D. M. et al. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293–1301 (1995)

    CAS  Article  Google Scholar 

  19. Tiwari-Woodruff, S. K., Lin, M. A., Schulteis, C. T. & Papazian, D. M. Voltage-dependent structural interactions in the Shaker K+ channel. J. Gen. Physiol. 115, 123–138 (2000)

    CAS  Article  Google Scholar 

  20. Papazian, D. M., Silverman, W. R., Lin, M. C., Tiwari-Woodruff, S. K. & Tang, C. Y. Structural organization of the voltage sensor in voltage-dependent potassium channels. Novartis Found. Symp. 245, 178–190 (2002)

    CAS  PubMed  Google Scholar 

  21. Gonzalez, C., Rosenman, E., Bezanilla, F., Alvarez, O. & Latorre, R. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3–S4 linker. Proc. Natl Acad. Sci. USA 98, 9617–9623 (2001)

    ADS  CAS  Article  Google Scholar 

  22. Wimley, W. C., Creamer, T. P. & White, S. H. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry 35, 5109–5124 (1996)

    CAS  Article  Google Scholar 

  23. Bass, R. B., Strop, P., Barclay, M. & Rees, D. C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002)

    ADS  CAS  Article  Google Scholar 

  24. Martinac, B., Buechner, M., Delcour, A. H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl Acad. Sci. USA 84, 2297–2301 (1987)

    ADS  CAS  Article  Google Scholar 

  25. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    ADS  CAS  Article  Google Scholar 

  26. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002)

    ADS  CAS  Article  Google Scholar 

  27. Yifrach, O. & MacKinnon, R. Energetics of pore opening in a voltage-gated K+ channel. Cell 111, 231–239 (2002)

    CAS  Article  Google Scholar 

  28. Laine, M. et al. Structural interactions between voltage sensor and pore in the Shaker K+ channels. Biophys. J. 82, 231a (2002)

    Google Scholar 

  29. Aziz, Q. H., Partridge, C. J., Munsey, T. S. & Sivaprasadarao, A. Depolarization induces intersubunit cross-linking in a S4 cysteine mutant of the Shaker potassium channel. J. Biol. Chem. 277, 42719–42725 (2002)

    CAS  Article  Google Scholar 

  30. Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the Shaker K+ channel S4. Neuron 16, 387–397 (1996)

    CAS  Article  Google Scholar 

  31. Yusaf, S. P., Wray, D. & Sivaprasadarao, A. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Arch. 433, 91–97 (1996)

    CAS  Article  Google Scholar 

  32. Baker, O. S., Larsson, H. P., Mannuzzu, L. M. & Isacoff, E. Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in Shaker K+ channel gating. Neuron 20, 1283–1294 (1998)

    CAS  Article  Google Scholar 

  33. Starace, D. M., Stefani, E. & Bezanilla, F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 19, 1319–1327 (1997)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Gadsby and O. Andersen for helpful discussions and advice on the manuscript. This work was supported in part by a grant from the National Institutes of Health (NIH) to R.M. V.R. is supported by a National Science Foundation Graduate Student Research Fellowship, and R.M. is an Investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick MacKinnon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, Y., Ruta, V., Chen, J. et al. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003). https://doi.org/10.1038/nature01581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01581

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing