Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae


Calorie restriction extends lifespan in a broad range of organisms, from yeasts to mammals. Numerous hypotheses have been proposed to explain this phenomenon, including decreased oxidative damage and altered energy metabolism. In Saccharomyces cerevisiae, lifespan extension by calorie restriction requires the NAD+-dependent histone deacetylase, Sir2 (ref. 1). We have recently shown that Sir2 and its closest human homologue SIRT1, a p53 deacetylase, are strongly inhibited by the vitamin B3 precursor nicotinamide2. Here we show that increased expression of PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an enzyme that deaminates nicotinamide, is both necessary and sufficient for lifespan extension by calorie restriction and low-intensity stress. We also identify PNC1 as a longevity gene that is responsive to all stimuli that extend lifespan. We provide evidence that nicotinamide depletion is sufficient to activate Sir2 and that this is the mechanism by which PNC1 regulates longevity. We conclude that yeast lifespan extension by calorie restriction is the consequence of an active cellular response to a low-intensity stress and speculate that nicotinamide might regulate critical cellular processes in higher organisms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calorie restriction and heat stress extend lifespan in a PNC1-dependent manner.
Figure 2: Pnc1 levels and activity are elevated in response to calorie restriction and low-intensity stress.
Figure 3: Pnc1–GFP is localized in the nucleus and cytoplasm, and concentrated in peroxisomes.
Figure 4: Manipulation of nicotinamide metabolism alters silencing and lifespan.


  1. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002)

    Article  CAS  Google Scholar 

  3. Kaeberlein, M., Andalis, A. A., Fink, G. R. & Guarente, L. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol. Cell. Biol. 22, 8056–8066 (2002)

    Article  CAS  Google Scholar 

  4. Jiang, J. C., Jaruga, E., Repnevskaya, M. V. & Jazwinski, S. M. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J. 14, 2135–2137 (2000)

    Article  CAS  Google Scholar 

  5. Swiecilo, A., Krawiec, Z., Wawryn, J., Bartosz, G. & Bilinski, T. Effect of stress on the life span of the yeast Saccharomyces cerevisiae. Acta Biochim. Pol. 47, 355–364 (2000)

    CAS  PubMed  Google Scholar 

  6. Smith, J. S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Tanny, J. C. & Moazed, D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Proc. Natl Acad. Sci. USA 98, 415–420 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Landry, J. et al. The silencing protein Sir2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Kaeberlein, M., McVey, M. & Guarente, L. The Sir2/3/4 complex and Sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999)

    Article  CAS  Google Scholar 

  11. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91, 1033–1042 (1997)

    Article  CAS  Google Scholar 

  12. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Rogina, B., Helfand, S. L. & Frankel, S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298, 1745 (2002)

    Article  CAS  Google Scholar 

  14. Vaziri, H. et al. hSIR2(SIRT1) Functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001)

    Article  CAS  Google Scholar 

  15. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001)

    Article  CAS  Google Scholar 

  16. Anderson, R. M. et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J. Biol. Chem. 277, 18881–18890 (2002)

    Article  CAS  Google Scholar 

  17. Landry, J., Slama, J. T. & Sternglanz, R. Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochem. Biophys. Res. Commun. 278, 685–690 (2000)

    Article  CAS  Google Scholar 

  18. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000)

    Article  CAS  Google Scholar 

  19. Sandmeier, J. J., Celic, I., Boeke, J. D. & Smith, J. S. Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD+ salvage pathway. Genetics 160, 877–889 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Perichon, R., Bourre, J. M., Kelly, J. F. & Roth, G. S. The role of peroxisomes in aging. Cell Mol. Life Sci. 54, 641–652 (1998)

    Article  CAS  Google Scholar 

  21. Lin, S. J. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344–348 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Lin, S. S., Manchester, J. K. & Gordon, J. I. Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J. Biol. Chem. 276, 36000–36007 (2001)

    Article  CAS  Google Scholar 

  23. Unkefer, C. J. & London, R. E. In vivo studies of pyridine nucleotide metabolism in Escherichia coli and Saccharomyces cerevisiae by carbon-13 NMR spectroscopy. J. Biol. Chem. 259, 2311–2320 (1984)

    CAS  PubMed  Google Scholar 

  24. Grant, R. S. & Kapoor, V. Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates. J. Neurochem. 70, 1759–1763 (1998)

    Article  CAS  Google Scholar 

  25. Aksoy, S., Szumlanski, C. L. & Weinshilboum, R. M. Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. J. Biol. Chem. 269, 14835–14840 (1994)

    CAS  PubMed  Google Scholar 

  26. Niewmierzycka, A. & Clarke, S. S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J. Biol. Chem. 274, 814–824 (1999)

    Article  CAS  Google Scholar 

  27. Virag, L. & Szabo, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002)

    Article  CAS  Google Scholar 

  28. Lal, A. et al. A public database for gene expression in human cancers. Cancer Res. 59, 5403–5407 (1999)

    CAS  PubMed  Google Scholar 

  29. Kassem, H., Sangar, V., Cowan, R., Clarke, N. & Margison, G. P. A potential role of heat shock proteins and nicotinamide N-methyl transferase in predicting response to radiation in bladder cancer. Int. J. Cancer 101, 454–460 (2002)

    Article  CAS  Google Scholar 

  30. Ghislain, M., Talla, E. & Francois, J. M. Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast 19, 215–224 (2002)

    Article  CAS  Google Scholar 

Download references


We thank members of the Sinclair laboratory, R. Veech, C. Wolberger, W. Forrester, S. Luikenhuis and D. Finkelstein, for reagents and discussions. This work was supported by the NIA and the Harvard–Armenise Foundation. D.S. is an Ellison Medical Research Foundation Special Fellow. R.A. is supported by a John Taplan Postdoctoral Fellowship, J.W. by a National Science Foundation Scholarship, and K.B. and O.M. by the American Federation of Aging Research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David A. Sinclair.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anderson, R., Bitterman, K., Wood, J. et al. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing