Interplanetary dust from the explosive dispersal of hydrated asteroids by impacts

Abstract

The Earth accretes about 30,000 tons of dust particles per year, with sizes in the range of 20–400 µm (refs 1, 2). Those particles collected at the Earth's surface—termed micrometeorites—are similar in chemistry and mineralogy to hydrated, porous meteorites3,4,5,6,7, but such meteorites comprise only 2.8% of recovered falls8. This large difference in relative abundances has been attributed to ‘filtering’ by the Earth's atmosphere9, that is, the porous meteorites are considered to be so friable that they do not survive the impact with the atmosphere. Here we report shock-recovery experiments on two porous meteorites, one of which is hydrated and the other is anhydrous. The application of shock to the hydrated meteorite reduces it to minute particles and explosive expansion results upon release of the pressure, through a much broader range of pressures than for the anhydrous meteorite. Our results indicate that hydrated asteroids will produce dust particles during collisions at a much higher rate than anhydrous asteroids, which explains the different relative abundances of the hydrated material in micrometeorites and meteorites: the abundances are established before contact with the Earth's atmosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Back-scattered SEM image of a portion of the Murchison sample shocked at 28 GPa.
Figure 2: Back-scattered SEM images of fractures in a portion of the Murchison sample shocked at 30 GPa.
Figure 3: TEM image of the matrix of Murchison shocked at 30 GPa.
Figure 4: Back-scattered SEM image (at the same magnification as in Fig. 2a) of a portion of the matrix of Allende shocked at 37 GPa.

References

  1. 1

    Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Taylor, S., Lever, J. H. & Harvey, R. P. Accretion rate of cosmic spherules measured at the South Pole. Nature 392, 899–903 (1998)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kurat, G., Koeberl, C., Presper, T., Brandstätter, F. & Maurette, M. Petrology and geochemistry of Antarctic micrometeorites. Geochim. Cosmochim. Acta 58, 3879–3904 (1994)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Brownlee, D. E., Bates, B. & Schramm, L. The elemental composition of stony cosmic spherules. Meteorit. Planet. Sci. 32, 157–175 (1997)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Genge, M. J., Grady, M. M. & Hutchison, R. The textures and compositions of fine-grained Antarctic micrometeorites: Implications for comparisons with meteorites. Geochim. Cosmochim. Acta 61, 5149–5162 (1997)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Engrand, C. & Maurette, M. Carbonaceous micrometeorites from Antarctica. Meteorit. Planet. Sci. 33, 565–580 (1998)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Nakamura, T., Noguchi, T., Yada, T., Nakamuta, Y. & Takaoka, N. Bulk mineralogy of individual micrometeorites determined by X-ray diffraction analysis and transmission electron microscopy. Geochim. Cosmochim. Acta 65, 4385–4397 (2001)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Sears, D. W. G. & Dodd, R. T. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Mathews, M. S.) 3–31 (Univ. Arizona Press, Tucson, 1988)

    Google Scholar 

  9. 9

    Baldwin, B. & Sheaffer, Y. Ablation and breakup of large meteoroids during atmospheric entry. J. Geophys. Res. 76, 4653–4668 (1971)

    ADS  Article  Google Scholar 

  10. 10

    McSween, H. Y. Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochim. Cosmochim. Acta 43, 1761–1770 (1979)

    ADS  CAS  Article  Google Scholar 

  11. 11

    McSween, H. Y. Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim. Cosmochim. Acta 41, 1777–1790 (1977)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Fuchs, L. H., Olsen, E. & Jensen, K. J. Mineralogy, mineral chemistry, and composition of the Murchison (C2) meteorite. Smithson. Contrib. Earth Sci. 10, 1–39 (1973)

    Article  Google Scholar 

  13. 13

    Corrigan, C. M. et al. The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteorit. Planet. Sci. 32, 509–515 (1997)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Noguchi, T. & Nakamura, T. Mineralogy of Antarctic micrometeorites recovered from the Dome Fuji Station. Antarct. Meteorite Res. 13, 285–301 (2000)

    ADS  CAS  Google Scholar 

  15. 15

    Greshake, A. et al. Heating experiments simulating atmospheric entry heating of micrometeorites: clues to their parent body sources. Meteorit. Planet. Sci. 33, 267–290 (1998)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Jessberger, E. K. et al. in Interplanetary Dust (eds Grün, E., Gustafson, B. A. S., Dermott, S. F. & Fechtig, H.) 253–294 (Springer, Heidelberg, 2001)

    Google Scholar 

  17. 17

    Toppani, A., Libourel, G., Engrand, C. & Maurette, M. Experimental simulation of atmospheric entry of micrometeorites. Meteorit. Planet. Sci. 36, 1377–1396 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Schaal, R. B., Hörz, F., Thompson, T. D. & Bauer, J. F. Shock metamorphism of granulated lunar basalt. Proc. Lunar Planet. Sci. Conf. 10, 2547–2571 (1979)

    ADS  Google Scholar 

  19. 19

    Kieffer, S. W. Shock metamorphism of the Coconino sandstone at Meteor Crater, Arizona. J. Geophys. Res. 76, 5449–5473 (1971)

    ADS  Article  Google Scholar 

  20. 20

    Schmitt, R. T. Shock experiments with the H6 chondrite Kernouvé: Pressure calibration of microscopic shock effects. Meteorit. Planet. Sci. 35, 545–560 (2000)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Gaffey, M. J., Bell, J. F. & Cruikshank, D. P. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 98–127 (Univ. Arizona Press, Tucson, 1989)

    Google Scholar 

  22. 22

    Jones, T. D., Lebofsky, L. A., Lewis, J. S. & Marley, M. S. The composition and origin of the C, P, and D asteroids: water as a tracer of thermal evolution in the outer belt. Icarus 88, 172–192 (1990)

    ADS  Article  Google Scholar 

  23. 23

    Housen, K. R., Holsapple, K. A. & Voss, M. E. Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402, 155–157 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Scott, E. R. D., Keil, K. & Stöffler, D. Shock metamorphism of carbonaceous chondrites. Geochim. Cosmochim. Acta 56, 4281–4293 (1992)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Stöffler, D., Keil, K. & Scott, E. R. D. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845–3967 (1991)

    ADS  Article  Google Scholar 

  26. 26

    Zolensky, M. E., Weisberg, M. K., Buchanan, P. C. & Mittlefehldt, D. W. Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon. Meteorit. Planet. Sci. 31, 518–537 (1996)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Sears, D. W. G. The case for chondrules and CAI being rare in the early solar system: Some implications for astrophysical models (abstract). Lunar Planet. Sci. 28, 1273–1274 (1997)

    ADS  Google Scholar 

  28. 28

    Flynn, G. J. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, 287–310 (1989)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Love, S. G. & Brownlee, D. E. Heating and thermal transformation of micrometeoroids entering the Earth's atmosphere. Icarus 89, 26–43 (1991)

    ADS  Article  Google Scholar 

  30. 30

    Tomeoka, K., Yamahana, Y. & Sekine, T. Experimental shock metamorphism of the Murchison CM carbonaceous chondrite. Geochim. Cosmochim. Acta 63, 3683–3703 (1999)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Hiroi, L. P. Keller and T. Mukai for discussions. We acknowledge support by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan, and a grant from the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazushige Tomeoka.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tomeoka, K., Kiriyama, K., Nakamura, K. et al. Interplanetary dust from the explosive dispersal of hydrated asteroids by impacts. Nature 423, 60–62 (2003). https://doi.org/10.1038/nature01567

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing