Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental detection of α-particles from the radioactive decay of natural bismuth


The only naturally occurring isotope of bismuth, 209Bi, is commonly regarded as the heaviest stable isotope. But like most other heavy nuclei abundant in nature and characterized by an exceptionally long lifetime, it is metastable with respect to α-decay1. However, the decay usually evades observation because the nuclear structure2,3 of 209Bi gives rise to an extremely low decay probability and, moreover, generates low-energy α-particles difficult to detect. Indeed, dedicated experiments2,3,4,5,6 attempting to record the α-decay of 209Bi in nuclear emulsions failed. However, scintillating bolometers7,8,9 operated at temperatures below 100 mK offer improved detection efficiency and sensitivity, whereas a broad palette of targets could be available10. Here we report the successful use of this method for the unambiguous detection of 209Bi α-decay in bismuth germanate detectors cooled to 20 mK. We measure an energy release of 3,137 ± 1 (statistical) ± 2 (systematic) keV and a half-life of (1.9 ± 0.2) × 1019 yr, which are in agreement with expected values.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The bolometric detection of 209Bi decay.
Figure 2: Discrimination of background events in a 46-g BGO bolometer.
Figure 3: α events during 241Am calibration in a 91-g BGO bolometer (114 h).


  1. Audi, G., Bersillon, O., Blachot, J. & Wapstra, A. H. The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A 624, 1–124 (1997)

    Article  ADS  Google Scholar 

  2. Hincks, E. P., Millar, C. H. & Hanna, G. C. A search for α-particles from the decay of 209Bi. Can. J. Phys. 36, 231–251 (1958)

    Article  ADS  CAS  Google Scholar 

  3. de Carvalho, H. G. & de Araújo Penna, M. Alpha-activity of 209Bi. Lett. Nuovo Cim. 3, 720–722 (1972)

    Article  Google Scholar 

  4. Jenkner, K. & Broda, E. Some upper limits of possible alpha-activity. Nature 164, 412–413 (1949)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Faraggi, H. & Berthelot, A. Sur la radioactivité alpha du bismuth naturel. C. R. Acad. Sci. 232, 2093–2095 (1951)

    CAS  Google Scholar 

  6. Riezler, W. & Porschen, W. Natürliche Radioaktivität von Wismut. Z. Naturforsch 7a, 634–635 (1952)

    ADS  CAS  Google Scholar 

  7. Gonzalez-Mestres, L. & Perret-Gallix, D. Detection of low energy solar neutrinos and galactic dark matter with crystal scintillators. Nucl. Instrum. Meth. A 279, 382–387 (1989)

    Article  ADS  Google Scholar 

  8. Bobin, C. et al. Alpha/gamma discrimination with a CaF2(Eu) target bolometer optically coupled to a composite infrared bolometer. Nucl. Instrum. Meth. A 386, 453–457 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Alessandrello, A. et al. Development of a thermal scintillating detector for double beta decay of 48Ca. Nucl. Phys. B (Proc. Suppl.) 28A, 233–235 (1992)

    Article  ADS  Google Scholar 

  10. Moses, W. W. et al. Prospects for dense, infrared emitting scintillators. IEEE Trans. Nucl. Sci. 45 (3), 462–466 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Ziegler, J. F. The Stopping and Ranges of Ions in Matter Vol. 4, Helium: Stopping Powers and Ranges in All Elemental Matter (Pergamon, New York, 1977)

    Google Scholar 

  12. Coron, N. et al. A composite bolometer as a charged-particle spectrometer. Nature 314, 75–76 (1985)

    Article  ADS  CAS  Google Scholar 

  13. Cebrián, S. et al. The ROSEBUD experiment at Canfranc: 2001 report. Nucl. Phys. B (Proc. Suppl.) 110, 97–99 (2002)

    ADS  Google Scholar 

  14. Zhou, J. W. et al. Advances towards fast thermal detectors of intermediate mass with high resolution and large dynamic range. Nucl. Instrum. Meth. A 335, 443–452 (1993)

    Article  ADS  CAS  Google Scholar 

  15. Alessandrello, A. et al. Preliminary results on the performance of a TeO2 thermal detector in a search for direct interactions of WIMPs. Phys. Lett. B 384, 316–322 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Rasmussen, J. O. Alpha-decay barrier penetrabilities with an exponential nuclear potential: even-even nuclei. Phys. Rev. 113, 1593–1598 (1959)

    Article  ADS  CAS  Google Scholar 

  17. Rasmussen, J. O. Alpha-decay barrier penetrabilities with an exponential nuclear potential: odd-mass nuclei. Phys. Rev. 115, 1675–1679 (1959)

    Article  ADS  CAS  Google Scholar 

  18. Zhou, T. Q., Tan, H. R., He, C. F., Zhu, R. Y. & Newman, H. B. Determination of trace elements in BGO by neutron activation analysis. Nucl. Instrum. Meth. A 258, 58–66 (1987)

    Article  ADS  Google Scholar 

  19. Barnes, R. G. L., Sims, R., Rousseau, M. D. & Sproston, M. Bismuth germanate (BGO) optimisation for energy resolution and purity. IEEE Trans. Nucl. Sci. 31, 249–252 (1984)

    Article  ADS  Google Scholar 

  20. Norman, E. B. et al. Diamonds, maybe, but bismuth is not forever. Bull. Am. Phys. Soc. 45, 30 (2000)

    Google Scholar 

  21. Giannatiempo, A. & Perego, A. Penetration effects in the internal conversion process of the 204 KeV transition in 205Tl. Z. Phys. A 308, 247–251 (1982)

    Article  ADS  CAS  Google Scholar 

  22. Cebrián, S. et al. Improved limits for natural α radioactivity of tungsten with a CaWO4 scintillating bolometer. Phys. Lett. B 556, 14–20 (2003)

    Article  ADS  Google Scholar 

  23. Tretyak, V. I. & Zdesenko, Y. G. Tables of double beta decay data—an update. Atom. Data Nucl. Data Tables 80, 83–116 (2002)

    Article  ADS  CAS  Google Scholar 

  24. DeBraeckeleer, L. et al. Measurement of lifetime of 209Bi and test of the exponential decay law. TUNL Progr. Rep. 37, 94 (1998)

    Google Scholar 

  25. DeBraeckeleer, L., Gould, C. R. & Tornow, W. Search for T1/2 of the “stable” nucleus 209Bi. TUNL Progr. Rep. 38, 87–89 (1999)

    Google Scholar 

  26. Powell, C. F., Fowler, P. H. & Perkins, D. H. The Study of Elementary Particles by the Photographic Method. An Account of the Principal Techniques and Discoveries Illustrated by an Atlas of Photomicrographs 137–138, 644–645 (Pergamon, New York, 1959)

    Google Scholar 

  27. Firestone, R. B. Table of Isotopes, 8th edn, Vol. II: A = 151–272 (eds Shirley, V. S., Baglin, C. M., Chu, S. Y. F. & Zipkin, J.) 2545, 2595 (Wiley, New York, 1996)

    Google Scholar 

Download references


This work is supported by the R&D programme from CNRS/INSU, and by BNM for the high-resolution α-spectrometry part. The design of the optical detectors results from years of support by CNES. P. Pari from CEA/SPEC designed our dilution refrigerator. We thank the SEMIRAMIS members of CSNSM for their accurate implantation, as well as F. Jomard for SIMS analysis, G. Audi for discussions, E. Leblanc from LNHB/BNM for independent calibration source measurements, and I. Rameau and Y. Bouvÿ for their support and comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Noël Coron.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Marcillac, P., Coron, N., Dambier, G. et al. Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature 422, 876–878 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing