The elemental abundance pattern in a galaxy at z = 2.626


The discovery of metal-poor stars1,2 (where metal is any element more massive than helium) has enabled astronomers to probe the chemical enrichment history of the Milky Way3,4. More recently, element abundances in gas inside high-redshift galaxies has been probed through the absorption lines imprinted on the spectra of background quasars5,6,7,8, but these have typically yielded measurements of only a few elements. Furthermore, interpretation of these abundances is complicated by the fact that differential incorporation of metals into dust can produce an abundance pattern similar to that expected from nucleosynthesis by massive stars9. Here we report the observation of over 25 elements in a galaxy at redshift z = 2.626. With these data, we can examine nucleosynthetic processes independent of the uncertainty arising from depletion. We find that the galaxy was enriched mainly by massive stars (M > 15 solar masses) and propose that it is the progenitor of a massive elliptical galaxy. The detailed abundance patterns suggest that boron is produced through processes that act independently of metallicity, and may require alternative mechanisms for the nucleosynthesis of germanium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sample of previously undetected metal-line transitions.
Figure 2: The nucleosynthetic enrichment pattern for a galaxy discovered in the early Universe.


  1. 1

    Chamberlain, J. W. & Aller, L. H. The atmospheres of A-type subdwarfs and 95 Leonis. Astrophys. J. 114, 52–72 (1951)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Helfer, H. L., Wallerstein, G. & Greenstein, J. L. Abundances in some population II K giants. Astrophys. J. 129, 700–719 (1959)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Wheeler, J. C., Sneden, C. & Truran, J. W. Jr Abundance ratios as a function of metallicity. Annu. Rev. Astron. Astrophys. 27, 279–349 (1989)

    ADS  CAS  Article  Google Scholar 

  4. 4

    McWilliam, A., Preston, G. W., Sneden, C. & Searle, L. A spectroscopic analysis of 33 of the most metal-poor stars. I. Astron. J. 109, 2757–2799 (1995)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Lu, L., Sargent, W. L. W., Barlow, T. A., Churchill, C. W. & Vogt, S. Abundances at high redshifts: The chemical enrichment history of damped Lyα galaxies. Astrophys. J. Suppl. 107, 475–519 (1996)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Pettini, M., Ellison, S. L., Steidel, C. C., Shapely, A. L. & Bowden, D. V. Si and Mn abundances in damped Lyα; systems with low dust content. Astrophys. J. 532, 65–76 (2000)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Molaro, P. et al. UVES observations of QSO 0000-2620: Oxygen and zinc abundances in the damped Lyα galaxy at zabs = 3.3901. Astrophys. J. 541, 54–60 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Prochaska, J. X. & Wolfe, A. M. The UCSD HIRES/Keck I damped Lyα abundance database. II. The implications. Astrophys. J. 566, 68–92 (2002)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Vladilo, G. Chemical abundances of damped Lyα systems: A new method for estimating dust depletion effects. Astron. Astrophys. 391, 407–415 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Schramm, D. N. & Turner, M. S. Big-bang nucleosynthesis. Rev. Mod. Phys. 70, 303–318 (1998)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Fields, B. D. & Olive, K. A. The revival of galactic cosmic-ray nucleosynthesis? Astrophys. J. 516, 797–810 (1999)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)

    ADS  Article  Google Scholar 

  13. 13

    Tinsley, B. M. Stellar lifetimes and abundance ratios in chemical evolution. Astrophys. J. 229, 1046–1056 (1979)

    ADS  CAS  Article  Google Scholar 

  14. 14

    White, R. L. et al. The FIRST bright quasar survey II. 60 nights and 1200 spectra later. Astrophys. J. Suppl. 126, 133–207 (2000)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Wolfe, A. M., Turnshek, D. A., Smith, H. E. & Cohen, R. D. Damped Lyman-alpha absorption by disk galaxies with large redshifts. I—The Lick survey. Astrophys. J. Suppl. 61, 249–304 (1986)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Sheinis, A. I. et al. SI, a New Keck Observatory echellette spectrograph and imager. Proc. Astron. Soc. Pacif. 114, 851–865 (2002)

    ADS  Article  Google Scholar 

  17. 17

    Prochaska, J. X., Gawiser, E., Wolfe, A. M., Cooke, J. & Gelino, D. The ESI/Keck II damped Lyα abundance database. Astrophys. J. Suppl. (submitted)

  18. 18

    Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m telescope. SPIE 2198, 362–375 (1994)

    ADS  CAS  Google Scholar 

  19. 19

    Savage, B. D. & Sembach, K. R. Interstellar abundances from absorption-line observations with the Hubble Space Telescope. Annu. Rev. Astron. Astrophys. 34, 279–330 (1996)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Jura, M. & York, D. G. Observations of interstellar chlorine and phosphorus. Astrophys. J. 219, 861–869 (1978)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. 101, 181–235 (1995)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Trager, S. C., Faber, S. M., Worthey, G. & González, J. J. The stellar population histories of local early-type galaxies. I. Population parameters. Astron. J. 119, 1645–1676 (2000)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Pettini, M. et al. The rest-frame optical spectra of Lyman break galaxies: Star formation, extinction, abundances, and kinematics. Astrophys. J. 554, 981–1000 (2001)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Pettini, M. et al. The ultraviolet spectrum of MS 1512-CB58: An insight into Lyman-break galaxies. Astrophys. J. 528, 96–107 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Saglia, R. P., Maraston, C., Thomas, D. & Bender, R. The puzzlingly small Ca II triplet absorption in elliptical galaxies. Astrophys. J. 579, L13–L16 (2002)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Woosley, S. E., Hartmann, D., Hoffman, R. D. & Haxton, W. The ν-process. Astrophys. J. 356, 272–301 (1990)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Cassé, M., Lehoucq, R. & Vangioni-Flam, E. Production and evolution of light elements in active star-forming regions. Nature 373, 318–321 (1995)

    ADS  Article  Google Scholar 

  28. 28

    Busso, M., Gallino, R. & Wasserburg, G. J. Nucleosynthesis in asymptotic giant branch stars: relevance for Galactic enrichment and Solar System formation. Annu. Rev. Astron. Astrophys. 37, 239–309 (1999)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Hoffman, R. D., Woosley, S. E., Fuller, G. M. & Meyer, B. S. Production of the light p-process nuclei in neutrino-driven winds. Astrophys. J. 460, 478–488 (1996)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Wolfe, A. M., Prochaska, J. X. & Gawiser, E. CII* absorption in damped Lyα systems: A new window on the star formation history of the universe. Astrophys. J. (submitted)

Download references


These observations were made with the W.M. Keck Telescope. The Keck Observatory is a joint facility of the University of California, the California Institute of Technology, and NASA. J.C.H. acknowledges support from a NASA grant to UC San Diego.

Author information



Corresponding author

Correspondence to Jason X. Prochaska.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prochaska, J., Howk, J. & Wolfe, A. The elemental abundance pattern in a galaxy at z = 2.626. Nature 423, 57–59 (2003).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing