Abstract
Conservation of gene order in vertebrates is evident after hundreds of millions of years of divergence1,2, but comparisons of the Arabidopsis thaliana sequence3 to partial gene orders of other angiosperms (flowering plants) sharing common ancestry ∼170–235 million years ago4 yield conflicting results5,6,7,8,9,10,11. This difference may be largely due to the propensity of angiosperms to undergo chromosomal duplication (‘polyploidization’) and subsequent gene loss12 (‘diploidization’); these evolutionary mechanisms have profound consequences for comparative biology. Here we integrate a phylogenetic approach (relating chromosomal duplications to the tree of life) with a genomic approach (mitigating information lost to diploidization) to show that a genome-wide duplication3,13,14,15,16,17 post-dates the divergence of Arabidopsis from most dicots. We also show that an inferred ancestral gene order for Arabidopsis reveals more synteny with other dicots (exemplified by cotton), and that additional, more ancient duplication events affect more distant taxonomic comparisons. By using partial sequence data for many diverse taxa to better relate the evolutionary history of completely sequenced genomes to the tree of life, we foster comparative approaches to the study of genome organization, consequences of polyploidy, and the molecular basis of quantitative traits.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The G2-Like gene family in Populus trichocarpa: identification, evolution and expression profiles
BMC Genomic Data Open Access 05 July 2023
-
Transposon signatures of allopolyploid genome evolution
Nature Communications Open Access 01 June 2023
-
Completing the TRB family: newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions
Plant Molecular Biology Open Access 28 April 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)
Smith, S. S. et al. Analyses of the extent of shared synteny and conserved gene orders between the genome of Fugu rubripes and Human 20q. Genome Res. 12, 776–784 (2002)
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000)
Yang, Y.-W., Lai, K.-N., Tai, P.-Y. & Li, W.-H. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J. Mol. Evol. 48, 597–604 (1999)
Salse, J., Benoit, P., Cooke, R. & Delseny, M. Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing Rice Genome Sequencing Project. Nucleic Acids Res. 30, 2317–2328 (2002)
Mayer, K. et al. Conservation of microstructure between a sequenced region of the genome of rice and multiple segments of the genome of Arabidopsis thaliana. Genome Res. 11, 1167–1174 (2001)
Ku, H., Vision, T., Liu, J. & Tanksley, S. D. Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl Acad. Sci. USA 97, 9121–9126 (2000)
Grant, D., Cregan, P. & Shoemaker, R. C. Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl Acad. Sci. USA 97, 4168–4173 (2000)
Lee, J. M., Grant, D., Vallejos, C. E. & Shoemaker, R. C. Genome organization in dicots. II. Arabidopsis as a ‘bridging species’ to resolve genome evolution events among legumes. Theor. Appl. Genet. 103, 765–773 (2001)
Rossberg, M. et al. Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13, 979–988 (2001)
Liu, H., Sachidanandam, R. & Stein, L. Comparative genomics between rice and Arabidopsis shows scant collinearity in gene order. Genome Res. 11, 2020–2026 (2001)
Eckhardt, N. A sense of self: The role of DNA sequence elimination in allopolyploidization. Plant Cell 13, 1699–1704 (2001)
Paterson, A. H. et al. Comparative genomics of plant chromosomes. Plant Cell 12, 1523–1539 (2000)
Blanc, G., Barakat, A., Guyot, R., Cooke, R. & Delseny, M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12, 1093–1101 (2000)
Vision, T. D., Brown, D. B. & Tanksley, S. D. The origins of genomic duplications in Arabidopsis. Science 290, 2114–2117 (2000)
Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000)
Simillion, C., Vandepoele, K., Van Montagu, M. C. E., Zabeau, M. & Van de Peer, Y. The hidden duplication past of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 99, 13627–13632 (2002)
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002)
Bennett, M. D. & Smith, J. B. Nuclear DNA amounts in angiosperms. Proc. R. Soc. Lond. B 274, 227–274 (1976)
Strauss, E. Can mitochondrial clocks keep time? Science 283, 1435–1438 (1999)
Zhang, L., Vision, T. J. & Gaut, B. S. Patterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana. Mol. Biol. Evol. 19, 1464–1473 (2002)
Benton, M. J. The Fossil Record 2 (Chapman and Hall, New York, 1993)
Bowe, L. M., Coat, G. & dePamphilis, C. W. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc. Natl Acad. Sci. USA 97, 4092–4097 (2000)
Paterson, A. H. et al. Toward a unified genetic map of higher plants, transcending the monocot–dicot divergence. Nature Genet. 14, 380–382 (1996)
Koch, M., Bishop, J. & Mitchell-Olds, T. Molecular systematics and evolution of Arabidopsis and Arabis. Plant Biol. 1, 529–537 (1999)
Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000)
Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002)
Paterson, A. H. et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726 (1988)
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)
Brubaker, C. L., Paterson, A. H. & Wendel, J. F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42, 184–203 (1999)
Acknowledgements
We thank A. Feltus, J. C. Kissinger and S. Schulze for comments on the manuscript, and the Paterson Lab for technical support. This work was supported by the US Department of Agriculture National Research Initiative and Initiative for Future Agriculture and Food Safety, the US National Science Foundation Plant Genome Research Program, the Howard Hughes Medical Institute Graduate Fellowship Program, the International Consortium for Sugarcane Biotechnology, the Georgia Cotton Commission/Cotton Inc., and the Georgia Agricultural Experiment Station.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
41586_2003_BFnature01521_MOESM1_ESM.zip
Supplementary Information 1: The unzipped version is an Excel spreadsheet of 9 Mb): this contains the lists of genes and their arrangements in the α,β and γ duplications, and their inferred ancestral gene orders. Note that the file is zipped to save space, and needs to be unzipped to read. (ZIP 2175 kb)
41586_2003_BFnature01521_MOESM2_ESM.xls
Supplementary Information 2: For each α,β and γ segment pair (labeled in first column), this contains corresponding Arabidopsis chromosomal locations, # genes in the segment pair, frequencies of internal rooted trees for the listed taxa (and in parens, number of trees for each taxon), and likelihood that the number of syntenic duplicated genes between the gene pair would occur by chance based on chi-squared contingency tests calculated reciprocally for the two members of the segment pair (hence two columns). (XLS 1434 kb)
41586_2003_BFnature01521_MOESM3_ESM.xls
Supplementary Information 3: For each α,β and γ segment pair (labeled in first column), this contains corresponding Arabidopsis chromosomal locations, # genes in the segment pair, frequencies of internal PAM-based pairwise distances for the listed taxa (and in parens, number of trees for each taxon), and likelihood that the number of syntenic duplicated genes between the gene pair would occur by chance based on chi-squared contingency tests calculated reciprocally for the two members of the segment pair (hence two columns). (XLS 67 kb)
41586_2003_BFnature01521_MOESM4_ESM.xls
Supplementary Information 4: This contains the probe names, 'User_Id’ in GenBank, Genbank accession numbers, chromosomal (homeologous group), map locations, and sequences of the cotton DNA probes used for synteny analysis. (XLS 67 kb)
Rights and permissions
About this article
Cite this article
Bowers, J., Chapman, B., Rong, J. et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003). https://doi.org/10.1038/nature01521
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature01521
This article is cited by
-
The G2-Like gene family in Populus trichocarpa: identification, evolution and expression profiles
BMC Genomic Data (2023)
-
Transposon signatures of allopolyploid genome evolution
Nature Communications (2023)
-
Genome-wide characterization of 2OGD superfamily for mining of susceptibility factors responding to various biotic stresses in Musa spp.
Physiology and Molecular Biology of Plants (2023)
-
Analysis of Lhc family genes reveals development regulation and diurnal fluctuation expression patterns in Cyperus esculentus, a Cyperaceae plant
Planta (2023)
-
Completing the TRB family: newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions
Plant Molecular Biology (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.