Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Critical thickness for ferroelectricity in perovskite ultrathin films

Abstract

The integration of ferroelectric oxide films into microelectronic devices1,2, combined with the size reduction constraints imposed by the semiconductor industry, have revived interest in the old question concerning the possible existence of a critical thickness for ferroelectricity. Current experimental techniques have allowed the detection of ferroelectricity in perovskite films down to a thickness of 40 Å (ten unit cells), ref. 3. Recent atomistic simulations4,5 have confirmed the possibility of retaining the ferroelectric ground state at ultralow thicknesses, and suggest the absence of a critical size. Here we report first-principles calculations on a realistic ferroelectric–electrode interface. We show that, contrary to current thought, BaTiO3 thin films between two metallic SrRuO3 electrodes in short circuit lose their ferroelectric properties below a critical thickness of about six unit cells (24 Å). A depolarizing electrostatic field, caused by dipoles at the ferroelectric–metal interfaces, is the reason for the disappearance of the ferroelectric instability. Our results suggest the existence of a lower limit for the thickness of useful ferroelectric layers in electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of a typical ferroelectric capacitor.
Figure 2: Evolution of the energy as a function of the soft-mode distortion ξ.
Figure 3: Induced dipoles, potentials and depolarizing fields along the [001] direction of the short-circuited ferroelectric capacitor.

Similar content being viewed by others

References

  1. McKee, R. A., Walker, F. J. & Chisholm, M. F. Physical structure and inversion charge at a semiconductor with a crystalline oxide. Science 293, 468–471 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Tybell, Th., Paruch, P., Giamarchi, T. & Triscone, J.-M. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Tybell, Th., Ahn, C. H. & Triscone, J.-M. Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856–858 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Ghosez, Ph. & Rabe, K. M. Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett. 76, 2767–2769 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Meyer, B. & Vanderbilt, D. Ab initio study of BaTiO3 and PbTiO3 surfaces in external electric fields. Phys. Rev. B 63, 205426 (2001)

    Article  ADS  Google Scholar 

  6. McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Ahn, C. H. et al. Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276, 1100–1103 (1997)

    Article  CAS  Google Scholar 

  8. Eisenbeiser, K. et al. Field effect transistors with SrTiO3 gate dielectric on Si. Appl. Phys. Lett. 76, 1324–1326 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Tybell, Th., Ahn, C. H. & Triscone, J.-M. Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.52Ti0.48)O3 thin films. Appl. Phys. Lett. 72, 1454–1456 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Scott, J. F. & Paz de Araujo, C. A. Ferroelectric memories. Science 246, 1400–1405 (1989)

    Article  ADS  CAS  Google Scholar 

  11. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)

    Google Scholar 

  12. Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Kohlstedt, H., Pertsev, N. A. & Waser, R. Size effects on polarization in epitaxial ferroelectric films and the concept of ferroelectric tunnel junctions including first results. Mater. Res. Soc. Symp. Proc. 688, C6.5 (2002)

    Google Scholar 

  14. Rao, F., Kim, M., Freeman, A. J., Tang, S. & Anthony, M. Structural and electronic properties of transition-metal/BaTiO3 (001) interfaces. Phys. Rev. B 55, 13953–13960 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Eom, C. B. et al. Single-crystal epitaxial thin films of the isotopic metallic oxides Sr1-xCaxRuO3 (0 ≤ x ≤ 1). Science 258, 1766–1769 (1992)

    Article  ADS  CAS  Google Scholar 

  16. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulations. J. Phys. Condens. Matter 14, 2745–2779 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Hartmann, A. J., Neilson, M., Lamb, R. N., Watanabe, K. & Scott, J. F. Ruthenium oxide and strontium ruthenate electrodes for ferroelectric thin-film capacitors. Appl. Phys. A 70, 239–242 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Ahn, C. H. et al. Ferroelectric field effect in ultrathin SrRuO3 films. Appl. Phys. Lett. 70, 206–208 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Eom, C. B. et al. Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes. Appl. Phys. Lett. 63, 2570–2572 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Zimmer, M., Junquera, J. & Ghosez, Ph. Ab initio study of metal/ferroelectric and insulator/ferroelectric heterostructures. AIP Conf. Proc. 626, 232–241 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Neaton, J. B., Hsueh, C. L. & Rabe, K. M. Enhanced polarization in strained BaTiO3 from first principles. Mater. Res. Soc. Symp. Proc. 718, 311 (2002)

    CAS  Google Scholar 

  22. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992)

    Article  ADS  CAS  Google Scholar 

  23. Baldereschi, A., Baroni, S. & Resta, R. Band offsets in lattice-matched heterojunctions: a model and first-principles calculations for GaAs/AlAs. Phys. Rev. Lett. 61, 734–737 (1988)

    Article  ADS  CAS  Google Scholar 

  24. Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000)

    Article  ADS  CAS  Google Scholar 

  25. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993)

    Article  ADS  CAS  Google Scholar 

  26. Bernardini, F. & Fiorentini, V. Electronic dielectric constants of insulators calculated by the polarization method. Phys. Rev. B 58, 15292–15295 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Mehta, R. R., Silverman, B. D. & Jacobs, J. T. Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44, 3379–3385 (1973)

    Article  ADS  CAS  Google Scholar 

  28. Chandra, P., Dawber, M., Littlewood, P. B. & Scott, J. F. Thickness-dependence of the coercive field in ferroelectrics. Preprint at 〈http://xxx.lanl.gov/abs/cond-mat/0206014〉 (2002).

  29. Nagaraj, B., Aggarwal, S. & Ramesh, R. Influence of contact electrodes on leakage characteristics in ferroelectric thin films. J. Appl. Phys. 90, 375–382 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Hwang, C. S. et al. A comparative study on the electrical conduction mechanisms of (Ba0.5Sr0.5)TiO3 thin films on Pt and IrO2 electrodes. J. Appl. Phys. 83, 3703–3713 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Th. Tybell, J.-M. Triscone, H. Kohlstedt, M. Veithen, X. Gonze and D. Vanderbilt for discussions, and K. M. Rabe and A. García for critical reading of the manuscript. This work was supported by the VolkswagenStiftung, the ULg, the FNRS-Belgium, the CGRI, the Fundación Ramón Areces and the Spanish MCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Ghosez.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junquera, J., Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003). https://doi.org/10.1038/nature01501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01501

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing