Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Glycine binding primes NMDA receptor internalization


NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system1. Recognition that glycine potentiates NMDAR-mediated currents2 as well as being a requisite co-agonist of the NMDAR subtype of ‘glutamate’ receptor3 profoundly changed our understanding of chemical synaptic communication in the central nervous system. The binding of both glycine and glutamate is necessary to cause opening of the NMDAR conductance pore1. Although binding of either agonist alone is insufficient to cause current flow through the channel, we report here that stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. Glycine binding alone does not cause the receptor to be endocytosed; this requires both glycine and glutamate site activation of NMDARs. The priming effect of glycine is mimicked by the NMDAR glycine site agonist d-serine, and is blocked by competitive glycine site antagonists. Synaptic as well as extrasynaptic NMDARs are primed for internalization by glycine site stimulation. Our results demonstrate transmembrane signal transduction through activating the glycine site of NMDARs, and elucidate a model for modulating cell–cell communication in the central nervous system.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Co-agonist stimulation induces dynamin-dependent NMDA receptor internalization.
Figure 2: Glycine site stimulation initiates a progressive decline in NMDA receptor-mediated currents.
Figure 3: Glycine binding primes the decline of NMDA responses and recruits adaptin β2 to the NMDA receptor complex.
Figure 4: Glycine primes dynamin-dependent internalization of NMDA receptors and leads to preferential suppression of NMDAR- but not AMPAR-mediated synaptic currents.


  1. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999)

    CAS  PubMed  Google Scholar 

  2. Johnson, J. W. & Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531 (1987)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. Kleckner, N. W. & Dingledine, R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835–837 (1988)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neurosci. 2, 454–460 (1999)

    CAS  Article  PubMed  Google Scholar 

  5. Lissin, D. V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl Acad. Sci. USA 95, 7097–7102 (1998)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Man, H. Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000)

    CAS  Article  PubMed  Google Scholar 

  7. Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000)

    CAS  Article  PubMed  Google Scholar 

  8. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999)

    CAS  Article  PubMed  Google Scholar 

  9. Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl Acad. Sci. USA 96, 14112–14117 (1999)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Kittler, J. T. et al. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20, 7972–7977 (2000)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Roche, K. W. et al. Molecular determinants of NMDA receptor internalization. Nature Neurosci. 4, 794–802 (2001)

    CAS  Article  PubMed  Google Scholar 

  12. Vissel, B., Krupp, J. J., Heinemann, S. F. & Westbrook, G. L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nature Neurosci. 4, 587–596 (2001)

    CAS  Article  PubMed  Google Scholar 

  13. Snyder, E. M. et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nature Neurosci. 4, 1079–1085 (2001)

    CAS  Article  PubMed  Google Scholar 

  14. Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259–263 (1997)

    CAS  Article  PubMed  Google Scholar 

  15. Grabs, D. et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J. Biol. Chem. 272, 13419–13425 (1997)

    CAS  Article  PubMed  Google Scholar 

  16. Hansen, S. H., Sandvig, K. & van Deurs, B. Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J. Cell Biol. 121, 61–72 (1993)

    CAS  Article  PubMed  Google Scholar 

  17. Watkins, J. C. & Olverman, H. J. Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci. 10, 265–272 (1987)

    CAS  Article  Google Scholar 

  18. Mothet, J. P. et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA 97, 4926–4931 (2000)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Foster, A. C. et al. Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain. Mol. Pharmacol. 41, 914–922 (1992)

    CAS  PubMed  Google Scholar 

  20. Danysz, W. & Parsons, C. G. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol. Rev. 50, 597–664 (1998)

    CAS  PubMed  Google Scholar 

  21. Slepnev, V. I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nature Rev. Neurosci. 1, 161–172 (2000)

    CAS  Article  Google Scholar 

  22. Salituro, F. G. et al. 3-(2-Carboxyindol-3-yl)propionic acid-based antagonists of the N-methyl-D-aspartic acid receptor associated glycine binding site. J. Med. Chem. 35, 1791–1799 (1992)

    CAS  Article  PubMed  Google Scholar 

  23. Marks, B. & McMahon, H. T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 (1998)

    CAS  Article  PubMed  Google Scholar 

  24. Bekkers, J. M. & Stevens, C. F. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230–233 (1989)

    ADS  CAS  Article  PubMed  Google Scholar 

  25. Mugnaini, M., Dal Forno, G., Corsi, M. & Bunnemann, B. Receptor binding characteristics of the novel NMDA receptor glycine site antagonist [3H]GV150526A in rat cerebral cortical membranes. Eur. J. Pharmacol. 391, 233–241 (2000)

    CAS  Article  PubMed  Google Scholar 

  26. Mugnaini, M., Antolini, M., Corsi, M. & van Amsterdam, F. T. [3H]5,7-dichlorokynurenic acid recognizes two binding sites in rat cerebral cortex membranes. J. Recept. Signal. Transduct. Res. 18, 91–112 (1998)

    CAS  Article  PubMed  Google Scholar 

  27. Popik, P. et al. [3H]1-aminocyclopropanecarboxylic acid, a novel probe for strychnine-insensitive glycine receptors. Eur. J. Pharmacol. 291, 221–227 (1995)

    CAS  Article  PubMed  Google Scholar 

  28. Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998)

    CAS  Article  PubMed  Google Scholar 

  29. Huang, Y. et al. CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29, 485–496 (2001)

    CAS  Article  PubMed  Google Scholar 

Download references


We thank J. L. Hicks and Y. Li for technical support, and J. F. MacDonald and L. Y. Wang for comments on the manuscript. This work was supported by the Canadian Institutes of Health Research (CIHR; to M.W.S. and Y.T.W.), the EJLB Foundation (to Y.T.W.), the Ontario Neurotrauma Foundation (ONF; to M.W.S.) and the Nicole Fealdman Memorial Fund (to M.W.S.). M.W.S. is a CIHR Investigator, Y.T.W. is a CIHR Investigator and the holder of the HSF of British Columbia and Yukon Chair in Stroke Research at the University of British Columbia and Vancouver Hospital and Health Sciences Centre, and is an International Scholar of the Howard Hughes Medical Institute. Y.N. is a Ronald Melzack Fellow of CIHR; Y.Q.H. is a Fellow of the ONF and CIHR/Heart and Stroke Foundation of Canada (HSFC); G.A. is a Fellow of Research Training Centre at Hospital for Sick Children; W.J. is a CIHR/HSFC student; and L.V.K. is a CIHR MD/PhD student. We thank J. F. MacDonald and M. Sheng for providing cDNA constructs. Y.T.W. and M.W.S. are joint senior authors.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yu Tian Wang or Michael W. Salter.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nong, Y., Huang, YQ., Ju, W. et al. Glycine binding primes NMDA receptor internalization. Nature 422, 302–307 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing