Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduced drag coefficient for high wind speeds in tropical cyclones

Abstract

The transfer of momentum between the atmosphere and the ocean is described in terms of the variation of wind speed with height and a drag coefficient that increases with sea surface roughness and wind speed. But direct measurements have only been available for weak winds; momentum transfer under extreme wind conditions has therefore been extrapolated from these field measurements. Global Positioning System sondes have been used since 1997 to measure the profiles of the strong winds in the marine boundary layer associated with tropical cyclones. Here we present an analysis of these data, which show a logarithmic increase in mean wind speed with height in the lowest 200 m, maximum wind speed at 500 m and a gradual weakening up to a height of 3 km. By determining surface stress, roughness length and neutral stability drag coefficient, we find that surface momentum flux levels off as the wind speeds increase above hurricane force. This behaviour is contrary to surface flux parameterizations that are currently used in a variety of modelling applications, including hurricane risk assessment and prediction of storm motion, intensity, waves and storm surges.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GPS sonde wind speed measurements normalized by mean boundary layer wind.
Figure 2: Mean wind profiles by MBL group.
Figure 3: Surface momentum exchange quantities as a function of U10.
Figure 4: Sea state photographs during an eyewall penetration in Hurricane Ella on 1 September 1978.

Similar content being viewed by others

References

  1. Bender, M. A., Ginis, I. & Kurihara, Y. Numerical simulations of tropical cyclone–ocean interaction with a high-resolution coupled model. J. Geophys. Res. 98, 23245–23263 (1993)

    Article  ADS  Google Scholar 

  2. Powell, M. D. Evaluations of diagnostic marine boundary layer models applied to hurricanes. Mon. Weath. Rev. 108, 757–766 (1980)

    Article  ADS  Google Scholar 

  3. Powell, M. D. & Black, P. G. The relationship of hurricane reconnaissance flight-level wind measurements to winds measured by NOAA's oceanic platforms. J. Wind Eng. Ind. Aerodyn. 36, 381–392 (1990)

    Article  Google Scholar 

  4. Vickery, P. J., Skerlj, P. F., Steckley, A. C. & Twisdale, L. A. Hurricane wind field model for use in hurricane simulations. J. Struct. Eng. ASCE 126, 1203–1222 (2000)

    Article  Google Scholar 

  5. Jelesnianski, C. P., Chen, J. & Shaffer, W. A. SLOSH: Sea, Lake, and Overland Surges from Hurricanes. NOAA Tech. Rep. NWS 48 (1992).

  6. Blain, C. A., Westerink, J. J. & Luettich, R. A. Jr The influence of domain size on the response characteristics of a hurricane storm surge model. J. Geophys. Res. 99, 18467–18479 (1994)

    Article  ADS  Google Scholar 

  7. Tolman, H. L. et al. Development and implementation of wind generated ocean surface wave models at NCEP. Weath. Forecast. 17, 311–333 (2002)

    Article  ADS  Google Scholar 

  8. Paulson, C. A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857–861 (1970)

    Article  ADS  Google Scholar 

  9. Charnock, H. Wind stress on a water surface. Q. J. R. Met. Soc. 81, 639–640 (1955)

    Article  ADS  Google Scholar 

  10. Garratt, J. R. Review of drag coefficients over oceans and continents. Mon. Weath. Rev. 104, 418–442 (1977)

    Google Scholar 

  11. Donelan, M. A., Dobson, F. W., Smith, S. D. & Anderson, R. J. On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr. 23, 2143–2149 (1993)

    Article  ADS  Google Scholar 

  12. Smith, S. D. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. 93, 15467–15472 (1988)

    Article  ADS  Google Scholar 

  13. Large, W. G. & Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11, 324–336 (1981)

    Article  ADS  Google Scholar 

  14. Taylor, P. K. & Yelland, M. J. The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr. 31, 572–590 (2001)

    Article  ADS  Google Scholar 

  15. Vickery, P. J. & Skerlj, P. F. Elimination of exposure D along the hurricane coastline in ASCE 7. J. Struct. Eng. 126, 545–549 (2000)

    Article  Google Scholar 

  16. Palmen, E. & Riehl, H. Budget of angular momentum and energy in tropical cyclones. J. Meteorol. 14, 150–159 (1957)

    Article  Google Scholar 

  17. Miller, B. I. A study of the filling of Hurricane Donna (1960) over land. Mon. Weath. Rev. 92, 389–406 (1964)

    Article  ADS  Google Scholar 

  18. Hawkins, H. F. & Rubsam, D. T. Hurricane Hilda Part II: Structure and budgets of the hurricane on 1 Oct. 1964. Mon. Weath. Rev. 96, 617–636 (1968)

    Article  ADS  Google Scholar 

  19. Donelan, M. A. & Hui, W. H. Surface Waves and Fluxes (eds Geernaert, G. L. & Plant, W. J.) (Kluwer, Dordrecht, 1990)

    Google Scholar 

  20. Geernhart, G. L., Katsaros, K. B. & Richter, K. Variation of the drag coefficient and its dependence on sea state. J. Geophys. Res. 91, 7667–7679 (1986)

    Article  ADS  Google Scholar 

  21. Smith, S. D. et al. Sea surface wind stress and drag coefficients: the HEXOS results. Bound. Layer Meteorol. 60, 109–142 (1992)

    Article  ADS  Google Scholar 

  22. Anctil, F. & Donelan, M. A. Air–water momentum flux observations over shoaling waves. J. Phys. Oceanogr. 26, 1344–1353 (1996)

    Article  ADS  Google Scholar 

  23. Krugermeyer, L., Gruenewald, M. & Dunckel, M. The influence of sea waves on the wind profile. Bound. Layer Meteorol. 14, 403–414 (1978)

    Article  ADS  Google Scholar 

  24. Jansen, P. A. E. M. Wave induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19, 745–754 (1989)

    Article  ADS  Google Scholar 

  25. Large, W. G., Morzel, J. & Crawford, G. B. Accounting for surface wave distortion of the marine wind profile in low-level ocean storms wind measurements. J. Phys. Oceanogr. 11, 2959–2971 (1995)

    Article  ADS  Google Scholar 

  26. Wright, C. W. et al. Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr. 31, 2472–2488 (2001)

    Article  ADS  Google Scholar 

  27. Tannenhill, I. R. Hurricanes (Princeton Univ. Press, Princeton, 1944)

    Google Scholar 

  28. Hock, T. R. & Franklin, J. L. The NCAR GPS dropwindsonde. Bull. Am. Meteorol. Soc. 80, 407–420 (1999)

    Article  ADS  Google Scholar 

  29. Houston, S. H. et al. in Preprints 24th Conf. Hurricanes Tropical Meteorol. (Fort Lauderdale, Florida, May 29–June 2) 339 (American Meteorological Society, Boston, 2000)

    Google Scholar 

  30. Willoughby, H. E. Gradient balance in tropical cyclones. J. Atmos. Sci. 47, 265–274 (1990)

    Article  ADS  Google Scholar 

  31. Shaw, N. The birth and death of cyclones. Geophys. Mem. 2, 213–227 (1922)

    Google Scholar 

  32. Haurwitz, B. The height of tropical cyclones and of the ‘eye’ of the storm. Mon. Weath. Rev. 63, 45–49 (1935)

    Article  ADS  Google Scholar 

  33. Jorgensen, D. P. Mesoscale and convective scale characteristics of mature hurricanes. II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci. 41, 1287–1311 (1984)

    Article  ADS  Google Scholar 

  34. Krayer, W. R. & Marshall, R. D. Gust factors applied to hurricane winds. Bull. Am. Soc. 73, 613–617 (1992)

    Article  Google Scholar 

  35. Vickery, P. J. & Skerlj, P. F. Hurricane gust factors revisited. J. Struct. Eng. (submitted)

  36. Bradbury, W. M. S., Deaves, D. M., Hunt, J. C. R., Kershaw, R. & Nakamura, K. The importance of convective gusts. Meteorol. Appl. 1, 365–378 (1994)

    Article  ADS  Google Scholar 

  37. Powell, M. D., Dodge, P. & Black, M. L. The landfall of Hurricane Hugo in the Carolinas. Weath. Forecast. 6, 379–399 (1991)

    Article  ADS  Google Scholar 

  38. Powell, M. D., Reinhold, T. A. & Marshall, R. D. in Proc. 10th Int. Conf. Wind Eng. (Copenhagen, 21–24 June) (eds Larsen, A., Larose, G. L. & Livesey, F. M.) 307–314 (Balkema, Rotterdam, 1999)

    Google Scholar 

  39. Amorocho, J. & DeVries, J. J. A new evaluation of the wind stress coefficient over water surfaces. J. Geophys. Res. 85, 433–442 (1980)

    Article  ADS  Google Scholar 

  40. Alamaro, M., Emanuel, K., Cotton, J., McGillis, W. & Edson, J. in Preprints 25th Conf. Hurricanes Tropical Meteorol. (San Diego, California, April 29–May 3) 667 (American Meteorological Society, Boston, 2002)

    Google Scholar 

  41. Newell, A. & Zakharov, V. E. Rough sea foam. Phys. Rev. Lett. 69, 1149–1151 (1992)

    Article  ADS  CAS  Google Scholar 

  42. Lundquist, J. in Abstracts Limnology and Oceanography: Navigating into the Next Century (Santa Fe, New Mexico, February 1–5) Abstr. SS54WE1538S (American Society of Limnology and Oceanography, Waco, Texas, 1999)

    Google Scholar 

  43. Kepert, J. D., Fairall, C. W. & Bao, J. W. in Air–Sea Fluxes: Momentum, Heat, and Mass Exchange (ed. Geernaert, G. L.) 363–409 (Kluwer, Dordrecht, 1998)

    Google Scholar 

  44. Donnelly, W. J. et al. Revised ocean backscatter models at C and Ku band under high-wind conditions. J. Geophys. Res. 104, 11485–11497 (1999)

    Article  ADS  Google Scholar 

  45. Kaplan, J. & Frank, W. M. The large scale inflow-layer structure of Hurricane Frederic (1979). Mon. Weath. Rev. 121, 3–20 (1993)

    Article  ADS  Google Scholar 

  46. Shay, L. K. Upper ocean response to tropical cyclones. RSMAS Tech. Note 99-003 (Univ. Miami, Rosenstiel School of Marine and Atmospheric Science, Florida, 1999)

    Google Scholar 

  47. Katsaros, K. B., Vachon, P. W., Liu, W. T., Black, P. G. J. Oceanography 58, 137–151 (2002)

    Article  Google Scholar 

  48. Wroe, D. R. & Barnes, G. M. Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Mon. Weath. Rev. 131 (in the press, 2003)

Download references

Acknowledgements

This paper is dedicated to the memory of R. Marshall. The assistance of F. Marks, the scientific and support staff of the NOAA Hurricane Research Division in Miami, and the NOAA Aircraft Operations Center in Tampa is appreciated. W. McGillis provided insight on the possible effect of sea foam on momentum transfer in tropical cyclones. Comments on an earlier version of the manuscript by E. Uhlhorn, F. Marks and R. Rogers are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Powell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, M., Vickery, P. & Reinhold, T. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283 (2003). https://doi.org/10.1038/nature01481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01481

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing