Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways

Abstract

Forkhead-homology-associated (FHA) domains function as protein–protein modules that recognize phosphorylated serine/threonine motifs1,2,3,4,5. Interactions between FHA domains and phosphorylated proteins are thought to have essential roles in the transduction of DNA damage signals; however, it is unclear how FHA-domain-containing proteins participate in mammalian DNA damage responses. Here we report that a FHA-domain-containing protein—mediator of DNA damage checkpoint protein 1 (MDC1; previously known as KIAA0170)—is involved in DNA damage responses. MDC1 localizes to sites of DNA breaks and associates with CHK2 after DNA damage. This association is mediated by the MDC1 FHA domain and the phosphorylated Thr 68 of CHK2. Furthermore, MDC1 is phosphorylated in an ATM/CHK2-dependent manner after DNA damage, suggesting that MDC1 may function in the ATM–CHK2 pathway. Consistent with this hypothesis, suppression of MDC1 expression results in defective S-phase checkpoint and reduced apoptosis in response to DNA damage, which can be restored by the expression of wild-type MDC1 but not MDC1 with a deleted FHA domain. Suppression of MDC1 expression results in decreased p53 stabilization in response to DNA damage. These results suggest that MDC1 is recruited through its FHA domain to the activated CHK2, and has a critical role in CHK2-mediated DNA damage responses.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: MDC1is phosphorylated and relocalizes to nuclear foci after DNA damage.
Figure 2: MDC1 interacts with CHK2 through the MDC1 FHA domain and the phosphorylated Thr 68 of CHK2.
Figure 3: MDC1 is required for CHK2-mediated DNA damage responses.
Figure 4: The functional interaction of CHK2 and MDC1 is required for CHK2-mediated DNA damage responses.

References

  1. Hofmann, K. & Bucher, P. The FHA domain: a putative nuclear signaling domain found in protein kinases and transcription factors. Trends Biochem. Sci. 20, 347–349 (1995)

    CAS  Article  PubMed  Google Scholar 

  2. Durocher, D., Henckel, J., Fersht, A. R. & Jackson, S. P. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4, 387–394 (1999)

    CAS  Article  PubMed  Google Scholar 

  3. Wang, P. et al. Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosyl peptides. J. Mol. Biol. 302, 927–940 (1999)

    Article  Google Scholar 

  4. Durocher, D. et al. The molecular basis of FHA domain: phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell 6, 1169–1182 (2000)

    CAS  Article  PubMed  Google Scholar 

  5. Li, J., Smith, G. P. & Walker, J. C. Kinase interaction domain of kinase-associated protein phsophatase, a phosphoprotein-binding domain. Proc. Natl Acad. Sci. USA 96, 7821–7826 (1999)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2001)

    ADS  Article  Google Scholar 

  7. Rouse, J. & Jackson, S. P. Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Callebaut, I. & Mormon, J. P. From BRCA1 to RAP1: A wildspread BRCT module closely associated with DNA repair. FEBS Lett. 400, 25–30 (1997)

    CAS  Article  PubMed  Google Scholar 

  9. Sun, Z., Hsiao, J., Fay, D. S. & Stern, D. F. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272–274 (1998)

    ADS  CAS  Article  PubMed  Google Scholar 

  10. Vialard, J. E., Gilbert, C. S., Green, C. M. & Lowndes, N. F. The budding yeast checkpoint protein rad9 is subject to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 17, 5679–5688 (1998)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Emiili, A. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2, 183–189 (1998)

    Article  Google Scholar 

  12. Ahn, J. Y., Li, X., Davis, H. L. & Canman, C. E. Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the CHK2 protein kinase via the forkhead-associated domain. J. Biol. Chem. 277, 19389–19395 (2002)

    CAS  Article  PubMed  Google Scholar 

  13. Xu, X., Tsvetkov, L. M. & Stern, D. F. Chk2 activation and phosphorylation-dependent oligomerization. Mol. Cell Biol. 22, 4419–4432 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Scully, R. et al. Dynamic changes of BRCA1 subnuclear localization and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997)

    CAS  Article  PubMed  Google Scholar 

  15. Ward, I. M., Wu, X. & Chen, J. Threonine 68 of Chk2 is phosphorylated at the site of DNA strand breaks. J. Biol. Chem. 276, 47755–47758 (2001)

    CAS  Article  PubMed  Google Scholar 

  16. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000)

    CAS  Article  PubMed  Google Scholar 

  18. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998)

    ADS  CAS  Article  PubMed  Google Scholar 

  19. Melchionna, R., Chen, X. B., Blasina, A. & McGowan, C. H. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biol. 2, 762–765 (2000)

    CAS  Article  PubMed  Google Scholar 

  20. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389–10394 (2000)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Ahn, J.-H., Schwarz, J. K., Piwnica-Worms, H. & Canman, C. E. Threonine 68 phosphorylation by ataxia telangiectasia-mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res. 60, 5934–5936 (2000)

    CAS  PubMed  Google Scholar 

  22. Chaturvedi, P. et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18, 4047–4054 (1999)

    CAS  Article  PubMed  Google Scholar 

  23. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  24. Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: A new explanation. Proc. Natl Acad. Sci. USA 77, 7315–7317 (1980)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. & Lukas, J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  26. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  27. Hirao, A. et al. Chk2 is a tumour suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol. Cell. Biol. 22, 6521–6532 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Jack, M. T. et al. Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-meidated apoptotic response. Proc. Natl Acad. Sci. USA 99, 9825–9829 (2002)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Chehab, N. H., Malikzay, A., Apple, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Pricves, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Wang for technical support. We also thank Mayo Protein Core facility for synthesis of peptides. We are grateful to L. Karnitz and S. Kaufmann and members of the Chen and Karnitz laboratories for discussions and ongoing technical support. This work is supported in part by grants from the National Institute of Health, the Prospect Creek Foundation and the Breast Cancer Research Foundation. J.C. is a recipient of a DOD breast cancer career development award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lou, Z., Minter-Dykhouse, K., Wu, X. et al. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421, 957–961 (2003). https://doi.org/10.1038/nature01447

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01447

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing