Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fire science for rainforests

Abstract

Forest fires are growing in size and frequency across the tropics. Continually eroding fragmented forest edges, they are unintended ecological disturbances that transcend deforestation to degrade vast regions of standing forest, diminishing ecosystem services and the economic potential of these natural resources. Affecting the health of millions, net forest fire emissions may have released carbon equivalent to 41% of worldwide fossil fuel use in 1997–98. Episodically more severe during El Niño events, pan-tropical forest fires will increase as more damaged, less fire-resistant, forests cover the landscape. Here I discuss the current state of tropical fire science and make recommendations for advancement.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Diagram of interrelationships between tropical land-cover changes and forest fires.
Figure 2: Spatial distribution of fire regimes62.
Figure 3: Positive and negative feedbacks controlling fire processes in tropical forests.

References

  1. Barber, C. V. & Schweithelm, J. Trial by Fire: Forest Fire and Forestry Policy in Indonesia's Era of Crisis and Reform (World Resources Institute, Washington DC, 2000)

    Google Scholar 

  2. Cochrane, M. A. Spreading Like Wildfire—Tropical Forest Fires in Latin America and the Caribbean: Prevention, Assessment and Early Warning (United Nations Environment Programme (UNEP), Mexico City, 2002); available at http://www.rolac.unep.mx/dewalac/eng/fire_ingles.pdf

    Google Scholar 

  3. Ruitenbeek, J. in Indonesia's Fire and Haze: the Cost of Catastrophe (eds Glover, D. & Jessup, T.) 88–112 (International Development Research Centre, Ottawa, 1999)

    Google Scholar 

  4. United Nations Environment Programme GEO Latin America and the Caribbean: Environment Outlook 2000 (UNEP, Mexico City, 2000)

    Google Scholar 

  5. Barbosa, R. I. & Fearnside, P. M. Incendios na Amazonia Brasileira: estimative da emissão de gases do efeito estufa pela queima de diferentes ecossistemas de Roraima na passagem do evento Ël Niño (1997/98). Acta Amazon. 29, 513–534 (1999)

    CAS  Google Scholar 

  6. Goldammer, J. G. et al. in Fire in the Tropical Biota (ed. Goldammer, J. G.) 487–489 (Springer, Berlin, 1990)

    Google Scholar 

  7. Cochrane, M. A. & Schulze, M. D. Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 2–16 (1999)

    Google Scholar 

  8. Gerwing, J. J. Degradation of forests through logging and fire in the eastern Brazilian Amazon. For. Ecol. Mgmt 157, 131–141 (2002)

    Google Scholar 

  9. Slik, J. W., Verburg, R. W. & Kebler, P. J. A. Effects of fire and selective logging on the tree species composition of lowland dipterocarp forest in East Kalimantan, Indonesia. Biodiv. Conserv. 11, 85–98 (2002)

    Google Scholar 

  10. Van Nieuwstadt, M. G. L., Sheil, D. & Kartawinata, K. The ecological consequences of logging in the burned forests of East Kalimantan, Indonesia. Conserv. Biol. 15, 1183–1186 (2001)

    Google Scholar 

  11. Kinnaird, M. F. & O'Brien, T. G. Ecological effects of wildfire on lowland rainforest in Sumatra. Conserv. Biol. 12, 954–956 (1998)

    Google Scholar 

  12. Kellman, M. & Meave, J. Fire in the tropical gallery forests of Belize. J. Biogeogr. 24, 23–24 (1997)

    Google Scholar 

  13. Cochrane, M. A. et al. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284, 1832–1835 (1999)

    CAS  PubMed  Google Scholar 

  14. Swaine, M. D. Characteristics of dry forest in West Africa and the influence of fire. J. Veg. Sci. 3, 365–374 (1992)

    Google Scholar 

  15. Woods, P. Effects of logging, drought, and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica 21, 290–298 (1989)

    Google Scholar 

  16. Fredericksen, N. J. & Fredericksen, T. S. Terrestrial wildlife responses to logging and fire in a Bolivian tropical humid forest. Biodiv. Conserv. 11, 27–38 (2002)

    Google Scholar 

  17. Barlow, J., Haugaasen, T. & Peres, C. A. Effects of ground fires on understorey bird assemblages in Amazonian forests. Biol. Conserv. 105, 157–169 (2002)

    Google Scholar 

  18. Page, S. S., Siegert, F., Rieley, J. O., Boehm, H. V. & Jaya, A. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2003)

    ADS  Google Scholar 

  19. Cairns, M. A., Hao, W. M., Alvarado, E. & Haggerty, P. in Vol. 1: Proc. Joint Fire Science Conf. and Workshop: Crossing the Millennium: Integrating Spatial Technologies and Ecological Principles for a New Age in Fire Management (eds Neuenschwander, L. F., Ryan, K. C., Gollberg, G. E. & Greer, J. D.) 242–247 (University of Idaho and the International Association of Wildland Fire, Moscow, Idaho, 2000)

    Google Scholar 

  20. Phulpin, T., Lavenu, F., Bellan, M. F., Mougenot, B. & Blasco, F. Using SPOT-4 HRVIR and VEGETATION sensors to assess impact of tropical forest fires in Roraima, Brazil. Int. J. Remote Sens. 23, 1943–1966 (2002)

    ADS  Google Scholar 

  21. Houghton, J. T. (ed.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, UK, 2001)

  22. Kunii, O. in Health Guidelines for Vegetation Fire Events: Background Papers (eds Goh, K., Schwela, D., Goldammer, J. G. & Simpson, O.) 299–316 (World Health Organization, Geneva, 1999)

    Google Scholar 

  23. Linden, E. A Estrada do desastre. Time Latina (20 September 2000); available at http://cnnbrasil.com/2000/time/09/20/amazon/.

  24. Ward, D. E. in Health Guidelines for Vegetation Fire Events: Background Papers (eds Goh, K., Schwela, D., Goldammer, J. G. & Simpson, O.) 71–86 (World Health Organization, Geneva, 1999)

    Google Scholar 

  25. Crutzen, P. J. & Andreae, M. O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669–1677 (1990)

    ADS  CAS  PubMed  Google Scholar 

  26. Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate and the hydrological cycle. Science 294, 2119–2124 (2001)

    ADS  CAS  PubMed  Google Scholar 

  27. Kaufman, Y. J., Tanré, D. & Boucher, O. A satellite view of aerosols in the climate system. Nature 419, 215–223 (2002)

    ADS  CAS  PubMed  Google Scholar 

  28. Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999)

    ADS  Google Scholar 

  29. Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1024–1047 (2000)

    Google Scholar 

  30. Pyne, S. J. World Fire: The Culture of Fire on Earth (Univ. Washington Press, Seattle, Washington, 1997)

    Google Scholar 

  31. Meggers, B. J. Archeological evidence for the impact of Mega-Niño events on Amazonia during the past two millennia. Clim. Change 28, 321–338 (1994)

    ADS  CAS  Google Scholar 

  32. Nepstad, D. C., Moreira, A. G. & Alencar, A. A. Flames in the Rain Forest: Origins, Impacts, and Alternatives to Amazonian Fires (World Bank, Brasilia, Brazil, 1999)

    Google Scholar 

  33. Tate, G. H. H. Life zones at Mount Roraima. Ecology 13, 235–257 (1932)

    Google Scholar 

  34. Goldammer, J. G. & Seibert, B. in Fire in the Tropical Biota (ed. Goldammer, J. G.) 11–31 (Springer, Berlin, 1990)

    Google Scholar 

  35. Uhl, C., Kauffman, J. B. & Cummings, D. L. Fire in the Venezuelan Amazon 2: Environmental conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos 53, 176–184 (1988)

    Google Scholar 

  36. Sanford, R. L., Saldarriaga, J., Clark, K., Uhl, C. & Herrera, R. Amazon rainforest fires. Science 227, 53–55 (1985)

    ADS  PubMed  Google Scholar 

  37. Goldammer, J. G. & Seibert, B. Natural rain-forest fires in Eastern Borneo during Pleistocene and Holocene. Naturwissenschaften 76, 518–520 (1989)

    ADS  Google Scholar 

  38. Hammond, D. S. & ter Steege, H. Propensity for fire in Guianan rainforests. Conserv. Biol. 12, 944–947 (1998)

    Google Scholar 

  39. Kauffman, J. B. & Uhl, C. in Fire in the Tropical Biota (ed. Goldammer, J. G.) 117–134 (Springer, Berlin, 1990)

    Google Scholar 

  40. Uhl, C. & Kauffman, J. B. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71, 437–449 (1990)

    Google Scholar 

  41. Mueller-Dombois, M. Proc. Conf. Fire Regimes and Ecosystem Properties. General Technical Report WO-26, 137–176 (US Forest Service, Washington DC, 1981)

    Google Scholar 

  42. Moreira, M. Z. et al. Contribution of transpiration to forest ambient vapour based on isotopic measurements. Glob. Change Biol. 3, 439–450 (1997)

    ADS  Google Scholar 

  43. Aubréville, A. M. A. The disappearance of the tropical forests of Africa. Unasylva 1, 5–11 (1947)

    Google Scholar 

  44. Eltahir, E. A. B. & Bras, R. L. Precipitation recycling. Rev. Geophys. 34, 367–378 (1996)

    ADS  Google Scholar 

  45. Nepstad, D. C. et al. The role of deep roots in water and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994)

    ADS  CAS  Google Scholar 

  46. Kleidon, A. & Lorenz, S. Deep roots sustain Amazonian rainforest in climate model simulations of the last ice age. Geophys. Res. Lett. 28, 2425–2428 (2001)

    ADS  Google Scholar 

  47. Uhl, C. & Buschbacher, R. A disturbing synergism between cattle ranch burning practices and selective tree harvesting in the Eastern Amazon. Biotropica 17, 265–268 (1985)

    Google Scholar 

  48. Cochrane, M. A. Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv. Biol. 15, 1515–1521 (2001)

    Google Scholar 

  49. Cochrane, M. A. & Laurance, W. F. Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol. 18, 311–325 (2002)

    Google Scholar 

  50. Cochrane, M. A., Skole, D. L., Matricardi, E. A. T., Barber, C., Chomentowski, W. in Working Forests in the Tropics: Conservation through Sustainable Management? (eds Zarin, D. J. et al.) (Columbia Univ. Press, New York, in the press)

  51. Bucini, G. & Lambin, E. F. Fire impacts on vegetation in Central Africa: a remote-sensing-based statistical analysis. Appl. Geogr. 22, 27–48 (2002)

    Google Scholar 

  52. Stott, P. Combustion in tropical biomass fires: a critical review. Prog. Phys. Geogr. 24, 355–377 (2000)

    Google Scholar 

  53. Tutin, C. E. G., White, L. J. T. & Mackangamissandzou, A. Lightning strike burns large forest tree in the Lopé Reserve, Gabon. Glob. Ecol. Biogeogr. Lett. 5, 36–41 (1996)

    Google Scholar 

  54. Vayda, A. P. Finding Causes of the 1997–98 Indonesian Forest Fires: Problems and Possibilities (World Wide Fund for Nature (WWF), Jakarta, Indonesia, 1999)

    Google Scholar 

  55. Skole, D. & Tucker, C. J. Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260, 1905–1910 (1993)

    ADS  CAS  PubMed  Google Scholar 

  56. Laurance, W. F. et al. The future of the Brazilian Amazon: Development trends and deforestation. Science 291, 438–439 (2001)

    CAS  PubMed  Google Scholar 

  57. Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997)

    ADS  CAS  Google Scholar 

  58. Nascimento, H. E. M. & Laurance, W. F. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. For. Ecol. Mgmt 168, 311–321 (2002)

    Google Scholar 

  59. Veríssimo, A., Barreto, P., Tarifa, R. & Uhl, C. Extraction of a high-value natural source from Amazon: the case of mahogany. For. Ecol. Mgmt 72, 39–60 (1995)

    Google Scholar 

  60. Holdsworth, A. R. & Uhl, C. Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol. Appl. 7, 713–725 (1997)

    Google Scholar 

  61. Siegert, F., Ruecker, G., Hinrichs, A. & Hoffman, A. A. Increased damage from fires in logged forests during droughts caused by El Niño. Nature 414, 437–440 (2001)

    ADS  CAS  PubMed  Google Scholar 

  62. Cochrane, M. A. In the line of fire: Understanding the impacts of tropical forest fires. Environment 43, 28–38 (2001)

    Google Scholar 

  63. Gascon, C., Williamson, G. B. & Fonseca, G. A. B. Receding edges and vanishing fragments. Science 288, 1356–1358 (2000)

    CAS  PubMed  Google Scholar 

  64. Siegert, F. & Ruecker, G. Use of multitemporal ERS-2 SAR images for identification of burned scars in south-east Asian tropical rainforest. Int. J. Remote Sens. 21, 831–837 (2000)

    Google Scholar 

  65. Huber, O., Steyermark, J. A., Prance, G. T. & Alés, C. The vegetation of the Sierra Parima, Venezuela-Brazil: Some results of recent exploration. Brittonia 36, 104–139 (1984)

    Google Scholar 

  66. Nepstad, D. C., Jipp, P., Moutinho, P., Negreiros, G. & Vieira, S. in Evaluating and Monitoring the Health of Large-Scale Ecosystems (eds Rapport, D., Gander, C. & Calow, P.) 333–349 (Springer, New York, 1995)

    Google Scholar 

  67. Anderson, H. E. Aids to Determining Fuel Models for Estimating Fire Behavior. General Technical Report INT-122 (US Forest Service, Ogden, Utah, 1982)

    Google Scholar 

  68. Kauffman, J. B., Cummings, D. L. & Ward, D. E. Fire in the Brazilian Amazon 2. Biomass, nutrient pools and losses in cattle pastures. Oecologia 113, 415–427 (1998)

    ADS  Google Scholar 

  69. Finney, M. A. FARSITE: Fire Area Simulator—Model Development and Evaluation (US Forest Service, Ogden, Utah, 1998)

    Google Scholar 

  70. Gould, K. A. et al. Post-fire tree regeneration in lowland Bolivia: implications for fire management. For. Ecol. Mgmt 165, 225–234 (2002)

    Google Scholar 

  71. Gerwing, J. J. Testing liana cutting and controlled burning as silvicultural treatments for a logged forest in the eastern Amazon. J. Appl. Ecol. 38, 1264–1276 (2001)

    Google Scholar 

  72. Quintere, J. G. Canadian mass fire experiment. 1989. J. Fire Protect. Eng. 5, 67–78 (1993)

    Google Scholar 

  73. Bailey, W. O. Report on the Michigan Forest Fires of 1881 (US War Department, Washington DC, 1882)

    Google Scholar 

  74. Laurance, W. F. & Williamson, B. Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv. Biol. 15, 1529–1535 (2001)

    Google Scholar 

  75. Lawton, R. O., Nair, U. S., Pielke, R. A. & Welch, R. M. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294, 584–587 (2001)

    ADS  CAS  PubMed  Google Scholar 

  76. Lyons, W. A., Nelson, T. E., Williams, E. R., Cramer, J. A. & Turner, T. R. Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science 282, 77–80 (1998)

    ADS  CAS  PubMed  Google Scholar 

  77. Johnson, E. A. & Miyanishi, K. Forest Fires: Behavior and Ecological Effects (Academic, San Diego, California, 2001)

    Google Scholar 

  78. Veríssimo, A., Cochrane, M. A. & Souza, C. Jr National forests in the Amazon. Science 297, 1478 (2002)

    PubMed  Google Scholar 

  79. DeFries, R. S., Bounoua, L. & Collatz, G. J. Human modification of the landscape and surface climate in the next fifty years. Glob. Change Biol. 8, 438–458 (2002)

    ADS  Google Scholar 

  80. Giglio, L., Kendall, J. D. & Justice, C. O. Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int. J. Remote Sens. 20, 1947–1985 (1999)

    ADS  Google Scholar 

  81. Elvidge, C. D. et al. in Remote Sensing Change Detection: Environmental Monitoring Methods and Applications (eds Lunetta, R. S. & Elvidge, C. D.) 74–122 (Ann Arbor Press, Ann Arbor, Michigan, 1999)

    Google Scholar 

  82. Fuller, D. O. & Fulk, M. Comparison of NOAA-AVHRR and DMSP-OLS for operational fire monitoring in Kalimantan, Indonesia. Int. J. Remote Sens. 21, 181–187 (2000)

    ADS  Google Scholar 

  83. Pereira, A. C. & Setzer, A. W. Comparison of fire detection in savannas using AVHRR's channel 3 and TM images. Int. J. Remote Sens. 17, 1925–1937 (1996)

    ADS  Google Scholar 

  84. Fuller, D. O. Satellite remote sensing of biomass burning with optical and thermal sensors. Prog. Phys. Geogr. 44, 543–561 (2000)

    ADS  Google Scholar 

  85. Giglio, L., Kendall, J. D. & Tucker, C. J. Remote sensing of fires with the TRMM VIRS. Int. J. Remote Sens. 21, 203–207 (2000)

    ADS  Google Scholar 

  86. Goldammer, J. G. in Health Guidelines for Vegetation Fire Events: Background Papers (eds Goh, K., Schwela, D., Goldammer, J. G. & Simpson, O.) 9–70 (World Health Organization, Geneva, 1999)

    Google Scholar 

  87. Oertel, D. et al. in Forest Fire Monitoring and Mapping: a Component of Global Observation of Forest Cover (eds Ahern, F., Grégoire, J. M. & Justice, C.) 224–228 (Joint Research Centre, Ispra, Italy, 2000)

    Google Scholar 

  88. Eva, H. & Lambin, E. Burnt area mapping in Central Africa using ATSR data. Int. J. Remote Sens. 19, 3473–3497 (1998)

    Google Scholar 

  89. Cochrane, M. A. & Souza, C. M. Jr Linear mixture model classification of burned forests in the eastern Amazon. Int. J. Remote Sens. 19, 3433–3440 (1998)

    ADS  Google Scholar 

  90. Stone, T. & Lefebvre, P. Using multi-temporal satellite data to evaluate selective logging in Pará. Brazil. Int. J. Remote Sens. 19, 2517–2526 (1998)

    ADS  Google Scholar 

  91. Nepstad, D. C. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999)

    ADS  CAS  Google Scholar 

  92. Matricardi, E. A. T., Skole, D. L., Chomentowski, W. & Cochrane, M. A. Multi-Temporal Detection and Measurement of Selective Logging in the Brazilian Amazon Using Remote Sensing (Michigan State Univ., East Lansing, Michigan, 2001); available at http://www.globalchange.msu.edu/publications

    Google Scholar 

  93. Uhl, C. et al. Natural resource management in the Brazilian Amazon. Bioscience 47, 160–168 (1997)

    Google Scholar 

  94. Jackson, S. M., Fredericksen, T. S. & Malcolm, J. R. Area disturbed and residual stand damage following logging in a Bolivian tropical forest. For. Ecol. Mgmt 166, 271–283 (2002)

    Google Scholar 

  95. Sist, P. & Nguyen-Thé, N. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan. For. Ecol. Mgmt 165, 85–103 (2002)

    Google Scholar 

  96. Goldammer, J. G., Seibert, B. & Schindele, W. in Dipterocarp Forest Ecosystems: Towards Sustainable Management (eds Schulte, A. & Schöne, D.) 155–185 (World Scientific, Singapore, 1996)

    Google Scholar 

  97. Agee, J. K. Fire Ecology of Pacific Northwest Forests (Island Press, Washington DC, 1993)

    Google Scholar 

Download references

Acknowledgements

I am grateful for support from NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Cochrane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cochrane, M. Fire science for rainforests. Nature 421, 913–919 (2003). https://doi.org/10.1038/nature01437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01437

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing