Upper limits to submillimetre-range forces from extra space-time dimensions

Article metrics

Abstract

String theory is the most promising approach to the long-sought unified description of the four forces of nature and the elementary particles1, but direct evidence supporting it is lacking. The theory requires six extra spatial dimensions beyond the three that we observe; it is usually supposed that these extra dimensions are curled up into small spaces. This ‘compactification’ induces ‘moduli’ fields, which describe the size and shape of the compact dimensions at each point in space-time. These moduli fields generate forces with strengths comparable to gravity, which according to some recent predictions2,3,4,5,6,7 might be detected on length scales of about 100 µm. Here we report a search for gravitational-strength forces using planar oscillators separated by a gap of 108 µm. No new forces are observed, ruling out a substantial portion of the previously allowed parameter space4 for the strange and gluon moduli forces, and setting a new upper limit on the range of the string dilaton2,3 and radion5,6,7 forces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Major components of the apparatus.
Figure 2: Distributions of data samples.
Figure 3: Means of the off- and on-resonance data samples.
Figure 4: Current limits on new gravitational strength forces between 1 µm and 1 cm.

References

  1. 1

    Greene, B. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (Norton, New York, 1999)

  2. 2

    Kaplan, D. B. & Wise, M. B. Couplings of a light dilaton and violations of the equivalence principle. J. High Energy Phys. 8, 37 (2000)

  3. 3

    Taylor, T. R. & Veneziano, G. Dilaton couplings at large distances. Phys. Lett. B 213, 450–454 (1988)

  4. 4

    Dimopoulos, S. & Giudice, G. Macroscopic forces from supersymmetry. Phys. Lett. B 379, 105–114 (1996)

  5. 5

    Antoniadis, I. A possible new dimension at a few TeV. Phys. Lett. B 246, 377–384 (1990)

  6. 6

    Antoniadis, I., Dimopoulos, S. & Dvali, G. Millimeter-range forces in superstring theories with weak-scale compactification. Nucl. Phys. B 516, 70–82 (1998)

  7. 7

    Chacko, Z. & Perazzi, E. Extra dimensions at the weak scale and deviations from Newtonian gravity. Preprint hep-ph/0210254 available at 〈http://arxiv.org/〉 (2002).

  8. 8

    Fischbach, E. & Talmadge, C. The Search for Non-Newtonian Gravity (Springer, New York, 1999)

  9. 9

    Bordag, M., Mohideen, U. & Mostepanenko, V. M. New Developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001)

  10. 10

    Long, J. C., Chan, H. W. & Price, J. C. Experimental status of gravitational-strength forces in the sub-centimeter regime. Nucl. Phys. B 539, 23–34 (1999)

  11. 11

    Hoyle, C. D. et al. Sub-millimeter tests of the gravitational inverse-square law: A search for “large” extra dimensions. Phys. Rev. Lett. 86, 1418–1421 (2001)

  12. 12

    Adelberger, E. G. Sub-mm tests of the gravitational inverse-square law. Preprint hep-ex/0202008 available at 〈http://arxiv.org/〉 (2002).

  13. 13

    Fischbach, E., Krause, D. E., Mostepanenko, V. M. & Novello, M. New constraints on ultrashort-ranged Yukawa interactions from atomic force microscopy. Phys. Rev. D 64, 075010 (2001)

  14. 14

    Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998)

  15. 15

    Kleiman, R. N., Kaminsky, G. K., Reppy, J. D., Pindak, R. & Bishop, D. J. Single-crystal silicon high-Q torsional oscillators. Rev. Sci. Instrum. 56, 2088–2091 (1985)

  16. 16

    Long, J. C. et al. New experimental limits on macroscopic forces below 100 microns. Preprint hep-ph/0210004 available at 〈http://arxiv.org/〉 (2002).

  17. 17

    Beane, S. R. On the importance of testing gravity at distances less than 1 cm. Gen. Rel. Grav. 29, 945–951 (1997)

  18. 18

    Sundrum, R. Towards an effective particle-string resolution of the cosmological constant problem. J High Energy Phys. 7, 1 (1999)

  19. 19

    Schmidhuber, C. Old puzzles. Preprint hep-th/0207203 available at 〈http://arxiv.org/〉 (2002).

  20. 20

    Moody, J. E. & Wilczek, F. New macroscopic forces? Phys. Rev. D 30, 130–138 (1984)

  21. 21

    Rosenberg, L. J. & van Bibber, K. A. Searches for invisible axions. Phys. Rep. 325, 1–39 (2000)

  22. 22

    Price, J. C. in Proc. Int. Symp. on Experimental Gravitational Physics (eds Michelson, P., En-ke, H. & Pizzella, G.) 436–439 (World Scientific, Singapore, 1988)

  23. 23

    Chan, H. W., Long, J. C. & Price, J. C. Taber vibration isolator for vacuum and cryogenic applications. Rev. Sci. Instrum. 70, 2742–2750 (1999)

  24. 24

    Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 µm range. Phys. Rev. Lett. 78, 5–8 (1997)

  25. 25

    Hoskins, J. K., Newman, R. D., Spero, R. & Shultz, J. Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm. Phys. Rev. D 32, 3084–3095 (1985)

  26. 26

    Chiaverini, J., Smullin, S. J., Geraci, A. A., Weld, D. M. & Kapitulnik, A. New experimental constraints on non-Newtonian forces below 100 microns. Preprint hep-ph/0209325 available at 〈http://arxiv.org/〉 (2002).

  27. 27

    Floratos, E. G. & Leontaris, G. K. Low scale unification, Newton's law and extra dimensions. Phys. Lett. B 465, 95–100 (1999)

  28. 28

    Kehagias, A. & Sfetsos, K. Deviations from the 1/r2 Newton law due to extra dimensions. Phys. Lett. B 472, 39–44 (2000)

Download references

Acknowledgements

We thank E. Lagae for work in the laboratory, and C. Briggs, T. Buxkemper, L. Czaia, H. Green, S. Gustafson and H. Rohner of the University of Colorado and JILA instrument shops for technical assistance. We also gratefully acknowledge discussions with S. de Alwis, B. Dobrescu and S. Dimopoulos. This work is supported by grants from the US National Science Foundation.

Author information

Correspondence to John C. Price.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.