Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Upper limits to submillimetre-range forces from extra space-time dimensions

Abstract

String theory is the most promising approach to the long-sought unified description of the four forces of nature and the elementary particles1, but direct evidence supporting it is lacking. The theory requires six extra spatial dimensions beyond the three that we observe; it is usually supposed that these extra dimensions are curled up into small spaces. This ‘compactification’ induces ‘moduli’ fields, which describe the size and shape of the compact dimensions at each point in space-time. These moduli fields generate forces with strengths comparable to gravity, which according to some recent predictions2,3,4,5,6,7 might be detected on length scales of about 100 µm. Here we report a search for gravitational-strength forces using planar oscillators separated by a gap of 108 µm. No new forces are observed, ruling out a substantial portion of the previously allowed parameter space4 for the strange and gluon moduli forces, and setting a new upper limit on the range of the string dilaton2,3 and radion5,6,7 forces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Major components of the apparatus.
Figure 2: Distributions of data samples.
Figure 3: Means of the off- and on-resonance data samples.
Figure 4: Current limits on new gravitational strength forces between 1 µm and 1 cm.

References

  1. Greene, B. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (Norton, New York, 1999)

    MATH  Google Scholar 

  2. Kaplan, D. B. & Wise, M. B. Couplings of a light dilaton and violations of the equivalence principle. J. High Energy Phys. 8, 37 (2000)

    ADS  Article  Google Scholar 

  3. Taylor, T. R. & Veneziano, G. Dilaton couplings at large distances. Phys. Lett. B 213, 450–454 (1988)

    ADS  CAS  Article  Google Scholar 

  4. Dimopoulos, S. & Giudice, G. Macroscopic forces from supersymmetry. Phys. Lett. B 379, 105–114 (1996)

    ADS  CAS  Article  Google Scholar 

  5. Antoniadis, I. A possible new dimension at a few TeV. Phys. Lett. B 246, 377–384 (1990)

    ADS  CAS  Article  Google Scholar 

  6. Antoniadis, I., Dimopoulos, S. & Dvali, G. Millimeter-range forces in superstring theories with weak-scale compactification. Nucl. Phys. B 516, 70–82 (1998)

    ADS  Article  Google Scholar 

  7. Chacko, Z. & Perazzi, E. Extra dimensions at the weak scale and deviations from Newtonian gravity. Preprint hep-ph/0210254 available at 〈http://arxiv.org/〉 (2002).

  8. Fischbach, E. & Talmadge, C. The Search for Non-Newtonian Gravity (Springer, New York, 1999)

    Book  Google Scholar 

  9. Bordag, M., Mohideen, U. & Mostepanenko, V. M. New Developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  10. Long, J. C., Chan, H. W. & Price, J. C. Experimental status of gravitational-strength forces in the sub-centimeter regime. Nucl. Phys. B 539, 23–34 (1999)

    ADS  Article  Google Scholar 

  11. Hoyle, C. D. et al. Sub-millimeter tests of the gravitational inverse-square law: A search for “large” extra dimensions. Phys. Rev. Lett. 86, 1418–1421 (2001)

    ADS  CAS  Article  Google Scholar 

  12. Adelberger, E. G. Sub-mm tests of the gravitational inverse-square law. Preprint hep-ex/0202008 available at 〈http://arxiv.org/〉 (2002).

  13. Fischbach, E., Krause, D. E., Mostepanenko, V. M. & Novello, M. New constraints on ultrashort-ranged Yukawa interactions from atomic force microscopy. Phys. Rev. D 64, 075010 (2001)

    ADS  Article  Google Scholar 

  14. Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998)

    ADS  CAS  Article  Google Scholar 

  15. Kleiman, R. N., Kaminsky, G. K., Reppy, J. D., Pindak, R. & Bishop, D. J. Single-crystal silicon high-Q torsional oscillators. Rev. Sci. Instrum. 56, 2088–2091 (1985)

    ADS  CAS  Article  Google Scholar 

  16. Long, J. C. et al. New experimental limits on macroscopic forces below 100 microns. Preprint hep-ph/0210004 available at 〈http://arxiv.org/〉 (2002).

  17. Beane, S. R. On the importance of testing gravity at distances less than 1 cm. Gen. Rel. Grav. 29, 945–951 (1997)

    ADS  Article  Google Scholar 

  18. Sundrum, R. Towards an effective particle-string resolution of the cosmological constant problem. J High Energy Phys. 7, 1 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  19. Schmidhuber, C. Old puzzles. Preprint hep-th/0207203 available at 〈http://arxiv.org/〉 (2002).

  20. Moody, J. E. & Wilczek, F. New macroscopic forces? Phys. Rev. D 30, 130–138 (1984)

    ADS  CAS  Article  Google Scholar 

  21. Rosenberg, L. J. & van Bibber, K. A. Searches for invisible axions. Phys. Rep. 325, 1–39 (2000)

    ADS  CAS  Article  Google Scholar 

  22. Price, J. C. in Proc. Int. Symp. on Experimental Gravitational Physics (eds Michelson, P., En-ke, H. & Pizzella, G.) 436–439 (World Scientific, Singapore, 1988)

    Google Scholar 

  23. Chan, H. W., Long, J. C. & Price, J. C. Taber vibration isolator for vacuum and cryogenic applications. Rev. Sci. Instrum. 70, 2742–2750 (1999)

    ADS  CAS  Article  Google Scholar 

  24. Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 µm range. Phys. Rev. Lett. 78, 5–8 (1997)

    ADS  CAS  Article  Google Scholar 

  25. Hoskins, J. K., Newman, R. D., Spero, R. & Shultz, J. Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm. Phys. Rev. D 32, 3084–3095 (1985)

    ADS  CAS  Article  Google Scholar 

  26. Chiaverini, J., Smullin, S. J., Geraci, A. A., Weld, D. M. & Kapitulnik, A. New experimental constraints on non-Newtonian forces below 100 microns. Preprint hep-ph/0209325 available at 〈http://arxiv.org/〉 (2002).

  27. Floratos, E. G. & Leontaris, G. K. Low scale unification, Newton's law and extra dimensions. Phys. Lett. B 465, 95–100 (1999)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  28. Kehagias, A. & Sfetsos, K. Deviations from the 1/r2 Newton law due to extra dimensions. Phys. Lett. B 472, 39–44 (2000)

    ADS  MathSciNet  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Lagae for work in the laboratory, and C. Briggs, T. Buxkemper, L. Czaia, H. Green, S. Gustafson and H. Rohner of the University of Colorado and JILA instrument shops for technical assistance. We also gratefully acknowledge discussions with S. de Alwis, B. Dobrescu and S. Dimopoulos. This work is supported by grants from the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Price.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Long, J., Chan, H., Churnside, A. et al. Upper limits to submillimetre-range forces from extra space-time dimensions. Nature 421, 922–925 (2003). https://doi.org/10.1038/nature01432

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01432

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing