Probing molecular dynamics with attosecond resolution using correlated wave packet pairs

Abstract

Spectroscopic measurements with increasingly higher time resolution are generally thought to require increasingly shorter laser pulses, as illustrated by the recent monitoring of the decay of core-excited krypton1 using attosecond photon pulses2,3. However, an alternative approach to probing ultrafast dynamic processes might be provided by entanglement, which has improved the precision4,5 of quantum optical measurements. Here we use this approach to observe the motion of a D2+ vibrational wave packet formed during the multiphoton ionization of D2 over several femtoseconds with a precision of about 200 attoseconds and 0.05 ångströms, by exploiting the correlation between the electronic and nuclear wave packets formed during the ionization event. An intense infrared laser field drives the electron wave packet, and electron recollision6,7,8,9,10,11 probes the nuclear motion. Our results show that laser pulse duration need not limit the time resolution of a spectroscopic measurement, provided the process studied involves the formation of correlated wave packets, one of which can be controlled; spatial resolution is likewise not limited to the focal spot size or laser wavelength.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Processes probed and exploited with the sub-laser-cycle dynamics method using correlated wave packet pairs.
Figure 2: Kinetic energy distribution of D+ at different pump–probe delay times.
Figure 3: The measured wave packet position as a function of time.

References

  1. 1

    Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    D'Ariano, G. M., Presti, P. L. & Paris, M. G. A. Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87, 27040 (2001)

    Article  Google Scholar 

  5. 5

    Resch, K. J., Lundeen, J. S. & Steinberg, A. M. Experimental observation of nonclassical effects on single-photon detection rates. Phys. Rev. A 63, 020102 (2000)

    Article  Google Scholar 

  6. 6

    Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Dietrich, P., Burnett, N. H., Ivanov, M. & Corkum, P. B. High harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light. Phys. Rev. A 50, 3585–3588 (1994)

    ADS  Article  Google Scholar 

  9. 9

    Paulus, G. G., Nicklich, W., Xu, H., Lambropoulos, P. & Walther, H. Plateau in above threshold ionization spectra. Phys. Rev. Lett. 72, 2851–2854 (1994)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Weber, Th. et al. Correlated electron emission with multiphoton double ionization. Nature 405, 658–661 (2000)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Bhardwaj, V. R., Rayner, D. M., Villeneuve, D. M. & Corkum, P. B. Quantum interference in double ionization and fragmentation of C6H6 in intense laser fields. Phys. Rev. Lett. 87, 253003 (2001)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Zewail, A. H. Femtosecond chemistry. Science 242, 1645–1653 (1988)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Krause, J. L., Schafer, K. J. & Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Ivanov, M., Corkum, P. B., Zuo, T. & Bandrauk, A. Routes to control of intense-field atomic polarizability. Phys. Rev. Lett. 74, 2933–2936 (1995)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lein, M., Hay, N., Velotta, R., Marangos, J. P. & Knight, P. L. Role of the intramolecular phase in high-harmonic generation. Phys. Rev. Lett. 88, 183903 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Hargittai, I. & Hargittai, M. Stereochemical Applications of Gas-Phase Electron Diffraction (VCH, New York, 1998)

    Google Scholar 

  18. 18

    Yudin, G. L. & Ivanov, M. Yu. Physics of correlated double ionization of atoms in intense laser fields: Quasistatic tunneling limit. Phys. Rev. A 63, 033404 (2001); erratum 64, 019902 (2001)

    ADS  Article  Google Scholar 

  19. 19

    Peek, J. M. Inelastic scattering of electrons by the hydrogen molecule ion. Phys. Rev. A 134, 877–883 (1964)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Schinke, R. Photodissociation Dynamics 114–115 (Cambridge Univ. Press, Cambridge, UK, 1993)

    Google Scholar 

  21. 21

    Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Lambropoulos, P. Mechanisms for multiple ionization of atoms by strong pulsed lasers. Phys. Rev. Lett. 55, 2141–2144 (1985)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Zavriyev, A., Bucksbaum, P. H., Muller, H. G. & Schumacher, D. W. Ionization and dissociation of H2 in intense laser fields at 1.064 µm, 532 nm, and 355 nm. Phys. Rev. A 42, R5500–R5513 (1990)

    ADS  Article  Google Scholar 

  24. 24

    Codling, K. & Frasinski, L. J. Dissociative ionization of small molecules in intense laser fields. J. Phys. B 26, 783–809 (1993)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Seideman, T., Ivanov, M. Yu. & Corkum, P. B. Role of electron localization in intense-field molecular ionization. Phys. Rev. Lett. 75, 2819–2822 (1995)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Zuo, T. & Bandrauk, A. D. Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. Phys Rev. A 52, R2511–R2514 (1995)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Constant, E., Stapelfeldt, H. & Corkum, P. B. Observation of enhanced ionization of molecular ions in intense laser fields. Phys. Rev. Lett. 76, 4140–4143 (1996)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with A. Stolow, A. Sokolov, A. D. Bandrauk, S. Chelkowski and J. Marangos. The authors appreciate financial support from Canada's Natural Science and Engineering Research Council, the Canadian Institute for Photonics Innovation, and Le Fonds Québécois de la Recherche sur la Nature et les Technologies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. B. Corkum.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niikura, H., Légaré, F., Hasbani, R. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003). https://doi.org/10.1038/nature01430

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.