Engineering evolution to study speciation in yeasts

Abstract

The Saccharomycessensu stricto’ yeasts are a group of species that will mate with one another, but interspecific pairings produce sterile hybrids. A retrospective analysis of their genomes revealed that translocations between the chromosomes of these species do not correlate with the group's sequence-based phylogeny1 (that is, translocations do not drive the process of speciation). However, that analysis was unable to infer what contribution such rearrangements make to reproductive isolation between these organisms. Here, we report experiments that take an interventionist, rather than a retrospective approach to studying speciation, by reconfiguring the Saccharomyces cerevisiae genome so that it is collinear with that of Saccharomyces mikatae. We demonstrate that this imposed genomic collinearity allows the generation of interspecific hybrids that produce a large proportion of spores that are viable, but extensively aneuploid. We obtained similar results in crosses between wild-type S. cerevisiae and the naturally collinear species Saccharomyces paradoxus, but not with non-collinear crosses. This controlled comparison of the effect of chromosomal translocation on species barriers suggests a mechanism for the generation of redundancy in the S. cerevisiae genome2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Strategy to create reciprocal translocations in yeast.
Figure 2: Discrimination between S. cerevisiae and S. mikatae chromosomes in hybrid zygotes.
Figure 3: Diagnostic PCR for each of the 16 chromosomes of the two parent species reveals the extent of aneuploidy in the meiotic progeny of hybrid zygotes 1 (tetrads A and B) and 3 (tetrads C and D).

References

  1. 1

    Fischer, G. et al. Chromosomal evolution in Saccharomyces. Nature 405, 451–454 (2000)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Naumov, G. I. in The Expanding Realm of Yeast-like Fungi (eds de Hoog, G. S., Smith, M. T. & Weyman, A. C. M.) (Elsevier, Amsterdam, 1987)

    Google Scholar 

  4. 4

    Naumov, G. I., James, S. A., Naumova, E. S., Louis, E. J. & Roberts, I. N. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int. J. Syst. Evol. Microbiol. 50, 1931–1942 (2000)

    CAS  Article  Google Scholar 

  5. 5

    Ryu, S. L., Murooka, Y. & Kaneko, Y. Reciprocal translocation at duplicated RPL2 loci might cause speciation of Saccharomyces bayanus and Saccharomyces cerevisiae. Curr. Genet. 33, 345–351 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Naumov, G. I., Naumova, E. S. & Querol, A. Genetic study of natural introgression supports delimitation of biological species in the Saccharomyces sensu stricto complex. System. Appl. Microbiol. 20, 595–601 (1997)

    Article  Google Scholar 

  7. 7

    Marinoni, G. et al. Horizontal transfer of genetic material among Saccharomyces yeasts. J. Bacteriol. 181, 6488–6496 (1999)

    CAS  Google Scholar 

  8. 8

    Seoighe, C. & Wolfe, K. H. Yeast genome evolution in the post-genome era. Curr. Opin. Microbiol. 2, 548–554 (1999)

    CAS  Article  Google Scholar 

  9. 9

    Delneri, D. et al. Exploring redundancy in the yeast genome: an improved strategy for the use of the cre-loxP system. Gene 252, 127–135 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Saccharomyces Genome Database. 〈http://genome-www4.stanford.edu/cgi-bin/FUNGI/FungiMap〉.

  11. 11

    Delneri, D., Gardner, D. C. J. & Oliver, S. G. Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. Genetics 153, 1591–1600 (1999)

    CAS  Google Scholar 

  12. 12

    Bengtsson, B. O. & Bodmer, W. F. The fitness of human translocation carriers. Ann. Human Genet. 40, 253–257 (1976)

    CAS  Article  Google Scholar 

  13. 13

    Loidl, J., Jin, Q.-W. & Jantsch, M. Meiotic pairing and segregation of translocation quadrivalents in yeast. Chromosoma 107, 247–254 (1998)

    CAS  Article  Google Scholar 

  14. 14

    Fischer, G., Neuvéglise, C., Durrens, P., Gaillardin, C. & Dujon, B. Evolution of gene order in the genomes of two related yeast species. Genome Res. 11, 2009–2019 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Lynch, M., O'Hely, M., Walsh, B. & Force, A. The probability of preservation of a newly arisen gene duplicate. Genetics 159, 1789–1804 (2001)

    CAS  Google Scholar 

  16. 16

    Ramsey, J. & Schemske, D. W. Pathways, mechanisms, and rate of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–501 (1998)

    Article  Google Scholar 

  17. 17

    Sebastiani, F., Barberio, C., Casalone, E., Cavalieri, D. & Polsinelli, M. Crosses between Saccharomyces cerevisiae and Saccharomyces bayanus generate fertile hybrids. Res. Microbiol. 153, 53–58 (2002)

    CAS  Article  Google Scholar 

  18. 18

    Tamai, Y., Momma, T., Yoshimoto, H. & Kaneko, Y. Co-existence of two types of chromosome in the bottom-fermenting yeast, Saccharomyces pastorianus. Yeast 14, 923–937 (1998)

    CAS  Article  Google Scholar 

  19. 19

    Kielland-Brandt, M. C., Nilson-Tillgren, T., Peterson, J. G. L., Holemberg, S. & Gjermansen, C. in Yeast Genetics (eds Spencer, J. F. T., Spencer, D. M. & Smith, A. R. W.) 421–438 (Springer, New York, 1983)

    Google Scholar 

  20. 20

    Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Llorente, B. et al. Genomic exploration of the hemiascomycetous yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae. FEBS Lett. 487, 122–133 (2000)

    CAS  Article  Google Scholar 

  22. 22

    Greig, D., Borts, R. H., Louis, E. J. & Travisano, M. Epistasis and hybrid sterility in Saccharomyces. Proc. R. Soc. Lond. B. 269, 1167–1671 (2002)

    Article  Google Scholar 

  23. 23

    Hunter, N., Chambers, S. R., Louis, E. J. & Borts, R. H. The mismatch repair system contributes to meiotic sterility in an interspecific yeast. EMBO J. 15, 1726–1733 (1996)

    CAS  Article  Google Scholar 

  24. 24

    Adams, A., Gottschling, D. E., Kaiser, C. A. & Stearns, T. in Methods in Yeast Genetics (ed. Dickerson, M. M.) 145–175 (Cold Spring Harbor Laboratory Press, New York, 1997)

    Google Scholar 

  25. 25

    Gietz, R. D., Schiestl, R. H., Willems, A. R. & Woods, R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360 (1995)

    CAS  Article  Google Scholar 

  26. 26

    Gardner, D. C. J., Heale, S. M., Stateva, L. I. & Oliver, S. G. Treatment of yeast cells with wall lytic enzymes is not required to prepare chromosomes for pulsed-field gel analysis. Yeast 9, 1053–1055 (1993)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Biotechnology and Biological Sciences Research Council (to E.J.L., I.N.R. and S.G.O.) and the Wellcome Trust (to S.G.O.). We thank S. James and L. Lockhart for their help in some early analyses, and B. Dujon for discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Oliver.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delneri, D., Colson, I., Grammenoudi, S. et al. Engineering evolution to study speciation in yeasts. Nature 422, 68–72 (2003). https://doi.org/10.1038/nature01418

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing