Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extra-embryonic function of Rb is essential for embryonic development and viability


The retinoblastoma (Rb) gene was the first tumour suppressor identified1. Inactivation of Rb in mice results in unscheduled cell proliferation, apoptosis and widespread developmental defects, leading to embryonic death by day 14.5 (refs 2–4). However, the actual cause of the embryonic lethality has not been fully investigated. Here we show that loss of Rb leads to excessive proliferation of trophoblast cells and a severe disruption of the normal labyrinth architecture in the placenta. This is accompanied by a decrease in vascularization and a reduction in placental transport function. We used two complementary techniques—tetraploid aggregation and conditional knockout strategies—to demonstrate that Rb-deficient embryos supplied with a wild-type placenta can be carried to term, but die soon after birth. Most of the neurological and erythroid abnormalities thought to be responsible for the embryonic lethality of Rb-null animals were virtually absent in rescued Rb-null pups. These findings identify and define a key function of Rb in extra-embryonic cell lineages that is required for embryonic development and viability, and provide a mechanism for the cell autonomous versus non-cell autonomous roles of Rb in development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rb-/- mice show placental dysplasia in the labyrinth layer.
Figure 2: Loss of Rb results in higher levels of proliferation in the trophoblast cells.
Figure 3: Normal placentae and Rb-deficient fetuses reconstituted by either tetraploid aggregation or conditional knockout approaches.
Figure 4: A wild-type placenta suppresses neurogenic and erythropoietic defects of Rb-deficient animals.


  1. Nevins, J. R. The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–703 (2001)

    Article  CAS  Google Scholar 

  2. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Zhang, P., Wong, C., DePinho, R. A., Harper, J. W. & Elledge, S. J. Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev. 12, 3162–3167 (1998)

    Article  CAS  Google Scholar 

  6. Faria, T. N., Ogren, L., Talamantes, F., Linzer, D. I. H. & Soares, M. J. Localization of placental lactogen-I in trophoblast giant cells of the mouse placenta. Biol. Reprod. 44, 327–331 (1991)

    Article  CAS  Google Scholar 

  7. Linzer, D. I., Lee, S. J., Ogren, L., Talamantes, F. & Nathans, D. Identification of proliferin mRNA and protein in mouse placenta. Proc. Natl Acad. Sci. USA 82, 4356–4359 (1985)

    Article  ADS  CAS  Google Scholar 

  8. Lescisin, K. R., Varmuza, S. & Rossant, J. Isolation and characterization of a novel trophoblast-specific cDNA in the mouse. Genes Dev. 2, 1639–1646 (1988)

    Article  CAS  Google Scholar 

  9. Russ, A. P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Metcalfe, L. D., Schmitz, A. A. & Pelka, J. R. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 38, 514–515 (1966)

    Article  CAS  Google Scholar 

  12. James, R. M., Klerkx, A. H., Keighren, M., Flockhart, J. H. & West, J. D. Restricted distribution of tetraploid cells in mouse tetraploid↔diploid chimaeras. Dev. Biol. 167, 213–226 (1995)

    Article  CAS  Google Scholar 

  13. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tallquist, M. D. & Soriano, P. Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis J. Genet. Dev. 26, 113–115 (2000)

    CAS  Google Scholar 

  15. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  Google Scholar 

  16. Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882 (1999)

    Article  CAS  Google Scholar 

  17. Copp, A. J. Death before birth: clues from gene knockouts and mutations. Trends Genet. 11, 87–93 (1995)

    Article  CAS  Google Scholar 

  18. Cross, J. C., Werb, Z. & Fisher, S. J. Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–1518 (1994)

    Article  ADS  CAS  Google Scholar 

  19. Lipinski, M. M. et al. Cell-autonomous and non-cell-autonomous functions of the Rb tumour suppressor in developing central nervous system. EMBO J. 20, 3402–3413 (2001)

    Article  CAS  Google Scholar 

  20. Maandag, E. C. et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994)

    Article  CAS  Google Scholar 

  21. Williams, B. O. et al. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J. 13, 4251–9425 (1994)

    Article  CAS  Google Scholar 

  22. Zacksenhaus, E. et al. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev. 10, 3051–3064 (1996)

    Article  CAS  Google Scholar 

  23. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998)

    Article  CAS  Google Scholar 

  24. Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev. 15, 386–391 (2001)

    Article  CAS  Google Scholar 

  25. Lasorella, A., Noseda, M., Beyna, M., Yokota, Y. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993)

    Article  ADS  CAS  Google Scholar 

  27. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainview, New York, 1994)

    Google Scholar 

  28. Kurz, H., Zechner, U., Orth, A. & Fundele, R. Lack of correlation between placenta and offspring size in mouse interspecific crosses. Anat. Embryol. 200, 335–343 (1999)

    Article  CAS  Google Scholar 

  29. Anson-Cartwright, L. et al. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nature Genet. 25, 311–314 (2000)

    Article  CAS  Google Scholar 

Download references


We thank A. Berns, P. Soriano and T. Jacks for providing Rb+/loxP, Mox2+/cre and Rb+/- mice, respectively. We also thank S. Hoshaw-Woodard and R. J. Jandacek for technical assistance, and C. Timmers for critical scientific discussions. This work was supported by grants from the National Cancer Institute (to G.L and T.J.R.), the National Institute of Health (to M.W. and G.L.), the National Center for Research Resources (to T.J.R.), and by the Canadian Institutes of Health Research (to J.C.C.). L.W., H.S. and A.T. were supported by NIH awards, A.d.B. was supported by a UOR Human Cancer Genetics Postdoctoral Fellowship, and G.L. is a V-Foundation and PEW Scholar.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gustavo Leone.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., de Bruin, A., Saavedra, H. et al. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421, 942–947 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing