Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

STAT3 signalling is required for leptin regulation of energy balance but not reproduction


Secretion of leptin from adipocytes communicates body energy status to the brain by activating the leptin receptor long form (LRb). LRb regulates energy homeostasis and neuroendocrine function; the absence of LRb in db/db mice results in obesity, impaired growth, infertility and diabetes1,2,3,4. Tyr 1138 of LRb mediates activation of the transcription factor STAT3 during leptin action5,6,7,8. To investigate the contribution of STAT3 signalling to leptin action in vivo, we replaced the gene encoding the leptin receptor (lepr) in mice with an allele coding for a replacement of Tyr 1138 in LRb with a serine residue (leprS1138) that specifically disrupts the LRb–STAT3 signal. Here we show that, like db/db mice, leprS1138 homozygotes (s/s) are hyperphagic and obese. However, whereas db/db mice are infertile, short and diabetic, s/s mice are fertile, long and less hyperglycaemic. Furthermore, hypothalamic expression of neuropeptide Y (NPY) is elevated in db/db mice but not s/s mice, whereas the hypothalamic melanocortin system is suppressed in both db/db and s/s mice. LRb–STAT3 signalling thus mediates the effects of leptin on melanocortin production and body energy homeostasis, whereas distinct LRb signals regulate NPY and the control of fertility, growth and glucose homeostasis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of mice expressing LRbS1138.
Figure 2: Obese phenotype of s/s mice.
Figure 3: Hypothalamic neuropeptide mRNA levels and the control of physiology in s/s and db/db mice.


  1. Chua, S. C. Jr et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutatioan in the leptin receptor gene in db/db mice. Cell 84, 491–495 (1996)

    Article  CAS  Google Scholar 

  4. Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995)

    Article  CAS  Google Scholar 

  5. Baumann, H. et al. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl Acad. Sci. USA 93, 8374–8378 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Stahl, N. et al. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267, 1349–1353 (1995)

    Article  ADS  CAS  Google Scholar 

  7. White, D. W., Kuropatwinski, K. K., Devos, R., Baumann, H. & Tartaglia, L. A. Leptin receptor (OB-R) signaling. J. Biol. Chem. 272, 4065–4071 (1997)

    Article  CAS  Google Scholar 

  8. Banks, A. S., Davis, S. M., Bates, S. H. & Myers, M. G. Jr Activation of downstream signals by the long form of the leptin receptor. J. Biol. Chem. 275, 14563–14572 (2000)

    Article  CAS  Google Scholar 

  9. Bjorbaek, C. et al. Divergent roles of SHP-2 in ERK activation by leptin receptors. J. Biol. Chem. 276, 4747–4755 (2001)

    Article  CAS  Google Scholar 

  10. Elmquist, J. K., Maratos-Flier, E., Saper, C. B. & Flier, J. S. Unraveling the central nervous system pathways underlying responses to leptin. Nature Neurosci. 1, 445–449 (1998)

    Article  CAS  Google Scholar 

  11. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genet. 12, 318–320 (1996)

    Article  CAS  Google Scholar 

  13. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early onset obesity in humans. Nature 387, 903–908 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Erickson, J. C., Hollopeter, G. & Palmiter, R. D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274, 1704–1707 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Malik, N. M. et al. Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology 142, 5198–5202 (2001)

    Article  CAS  Google Scholar 

  17. Chehab, F. F., Mounzih, K., Lu, R. & Lim, M. E. Early onset of reproductive function in normal female mice treated with leptin. Science 275, 88–90 (1997)

    Article  CAS  Google Scholar 

  18. Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786 (1999)

    Article  CAS  Google Scholar 

  19. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000)

    Article  CAS  Google Scholar 

  21. Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997)

    Article  CAS  Google Scholar 

  23. Catzeflis, C. et al. Neuropeptide Y administered chronically into the lateral ventricle profoundly inhibits both the gonadotropic and the somatotropic axis in intact adult female rats. Endocrinology 132, 224–234 (1993)

    Article  CAS  Google Scholar 

  24. Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neurosci. 1, 271–272 (1998)

    Article  CAS  Google Scholar 

  25. Niswender, K. D. et al. Intracellular signalling: Key enzyme in leptin-induced anorexia. Nature 413, 794–795 (2001)

    Article  ADS  CAS  Google Scholar 

Download references


We thank G. Leiberman, D. Trombly and M. Seifert for assistance. This work was supported by grants from the NIH (to M.G.M. and M.W.S.), and an ADA/EASD Transatlantic Fellowship (to S.H.B.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Martin G. Myers Jr.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bates, S., Stearns, W., Dundon, T. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing