Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo

  • A Corrigendum to this article was published on 15 June 2006

Abstract

Neural-network oscillations at distinct frequencies have been implicated in the encoding, consolidation and retrieval of information in the hippocampus. Some GABA (γ-aminobutyric acid)-containing interneurons fire phase-locked to theta oscillations (4–8 Hz) or to sharp-wave-associated ripple oscillations (120–200 Hz), which represent different behavioural states1,2,3,4,5,6. Interneurons also entrain pyramidal cells in vitro7. The large diversity of interneurons8,9,10 poses the question of whether they have specific roles in shaping distinct network activities in vivo. Here we report that three distinct interneuron types—basket, axo-axonic and oriens–lacunosum-moleculare cells—visualized and defined by synaptic connectivity as well as by neurochemical markers, contribute differentially to theta and ripple oscillations in anaesthetized rats. The firing patterns of individual cells of the same class are remarkably stereotyped and provide unique signatures for each class. We conclude that the diversity of interneurons, innervating distinct domains of pyramidal cells11, emerged to coordinate the activity of pyramidal cells in a temporally distinct and brain-state-dependent manner.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Firing patterns of a parvalbumin-positive basket cell (T44b) in vivo.
Figure 2: Firing patterns of a parvalbumin-positive axo-axonic cell (T76b) in vivo.
Figure 3: Firing patterns of an O-LM cell (T64a) in vivo.
Figure 4: Distinct interneuron classes generate different firing patterns during theta and ripple oscillations in vivo.

References

  1. 1

    O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, UK, 1978)

    Google Scholar 

  2. 2

    Fox, S. E. Membrane potential and impedance changes in hippocampal pyramidal cells during theta rhythm. Exp. Brain Res. 77, 283–294 (1989)

    CAS  Article  Google Scholar 

  3. 3

    Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: Network and intracellular mechanisms. J. Neurosci. 15, 30–46 (1995)

    CAS  Article  Google Scholar 

  4. 4

    Ylinen, A. et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90 (1995)

    CAS  Article  Google Scholar 

  5. 5

    Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsáki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999)

    CAS  Article  Google Scholar 

  6. 6

    Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002)

    Article  Google Scholar 

  7. 7

    Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996)

    CAS  Article  Google Scholar 

  9. 9

    Fricker, D. & Miles, R. Interneurons, spike timing, and perception. Neuron 32, 771–774 (2001)

    CAS  Article  Google Scholar 

  10. 10

    McBain, C. J. & Fisahn, A. Interneurons unbound. Nature Rev. Neurosci. 2, 11–23 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Traub, R. D. et al. Axonal gap junctions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis. Rev. Neurosci. 13, 1–30 (2002)

    Article  Google Scholar 

  13. 13

    Vanderwolf, C. H. Cerebral activity and behavior: Control by central cholinergic and serotonergic systems. Int. Rev. Neurobiol. 30, 225–340 (1988)

    CAS  Article  Google Scholar 

  14. 14

    Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: Morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J. Neurosci. Methods 65, 113–136 (1996)

    CAS  Article  Google Scholar 

  15. 15

    McBain, C. J., DiChiara, T. J. & Kauer, J. A. Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14, 4433–4445 (1994)

    CAS  Article  Google Scholar 

  16. 16

    Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. Hippocampal CA1 interneurons: An in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665 (1995)

    CAS  Article  Google Scholar 

  17. 17

    Ali, A. B. & Thomson, A. M. Facilitating pyramid to horizontal oriens–alveus interneurone inputs: Dual intracellular recordings in slices of rat hippocampus. J. Physiol. (Lond.) 507, 185–199 (1998)

    CAS  Article  Google Scholar 

  18. 18

    Maccaferri, G., Roberts, J. D. B., Szucs, P., Cottingham, C. A. & Somogyi, P. Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J. Physiol. (Lond.) 524, 91–116 (2000)

    CAS  Article  Google Scholar 

  19. 19

    Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Brun, V. H. et al. Place cells and place recognition maintained by direct entorhinal–hippocampal circuitry. Science 296, 2243–2246 (2002)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Gillies, M. J. et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. (Lond.) 543, 779–793 (2002)

    CAS  Article  Google Scholar 

  22. 22

    Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001)

    CAS  Article  Google Scholar 

  24. 24

    Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996)

    CAS  Article  Google Scholar 

  25. 25

    Mehta, M. R., Lee, A. K. & Wilson, M. A. Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417, 741–746 (2002)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Harris, K. D. et al. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417, 738–741 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Katona, I., Acsady, L. & Freund, T. F. Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 88, 37–55 (1999)

    CAS  Article  Google Scholar 

  28. 28

    Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997)

    CAS  Article  Google Scholar 

  29. 29

    Losonczy, A., Zhang, L., Shigemoto, R., Somogyi, P. & Nusser, Z. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. J. Physiol. (Lond.) 542, 193–210 (2002)

    CAS  Article  Google Scholar 

  30. 30

    Zar, J. H. Biostatistical Analysis (Prentice Hall, New Jersey, 1999)

    Google Scholar 

Download references

Acknowledgements

We thank G. Horseman and S. Gray from Cambridge Electronic Design, and P. Jays and L. Norman for technical assistance. We thank Z. Nusser, G. Tamas and J. Csicsvari for critically reading an earlier version of the manuscript, and Y. Dalezios for help with the statistics. T.K. was supported by an Erwin Schroedinger Fellowship from the Austrian Science Fund during part of this study; G.B. was supported by the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Klausberger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klausberger, T., Magill, P., Márton, L. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003). https://doi.org/10.1038/nature01374

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing