Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultra-high-Q toroid microcavity on a chip

Abstract

The circulation of light within dielectric volumes enables storage of optical power near specific resonant frequencies and is important in a wide range of fields including cavity quantum electrodynamics1,2, photonics3,4, biosensing5,6 and nonlinear optics7,8,9. Optical trajectories occur near the interface of the volume with its surroundings, making their performance strongly dependent upon interface quality. With a nearly atomic-scale surface finish, surface-tension-induced microcavities such as liquid droplets or spheres10,11,12,13 are superior to all other dielectric microresonant structures when comparing photon lifetime or, equivalently, cavity Q factor. Despite these advantageous properties, the physical characteristics of such systems are not easily controlled during fabrication. It is known that wafer-based processing14 of resonators can achieve parallel processing and control, as well as integration with other functions. However, such resonators-on-a-chip suffer from Q factors that are many orders of magnitude lower than for surface-tension-induced microcavities, making them unsuitable for ultra-high-Q experiments. Here we demonstrate a process for producing silica toroid-shaped microresonators-on-a-chip with Q factors in excess of 100 million using a combination of lithography, dry etching and a selective reflow process. Such a high Q value was previously attainable only by droplets or microspheres and represents an improvement of nearly four orders of magnitude over previous chip-based resonators.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Scanning electron micrograph of a silica microdisk after selective reflow treatment with a CO2 laser.
Figure 3: Transmission spectra of a toroidal resonator.
Figure 4: Ringdown measurement of a 90-µm-diameter toroid microcavity at the critical-coupling point.

References

  1. Lefevre-Seguin, V. & Haroche, S. Towards cavity-QED experiments with silica microspheres. Mater. Sci. Eng. B 48, 53–58 (1997)

    Article  Google Scholar 

  2. Vernooy, D. W., Furusawa, A., Georgiades, N. P., Ilchenko, V. S. & Kimble, H. J. Cavity QED with high-Q whispering gallery modes. Phys. Rev. A 57, R2293–R2296 (1998)

    Article  ADS  CAS  Google Scholar 

  3. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Sandoghdar, V. et al. Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A 54, R1777–R1780 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Vollmer, F. et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Serpenguzel, A., Arnold, S. & Griffel, G. Excitation of resonances of microspheres on an optical fiber. Opt. Lett. 20, 654–656 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Chang, R. K. & Campillo, A. J. (eds) Optical Processes in Microcavities (World Scientific, Singapore, 1996)

  8. Treussart, F. et al. Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium. Eur. Phys. J. D 1, 235–238 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Campillo, A. J., Eversole, J. D. & Lin, H-B. Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets. Phys. Rev. Lett. 67, 437–440 (1991)

    Article  ADS  CAS  Google Scholar 

  11. Braginsky, V. B., Gorodetsky, M. L. & Ilchenko, V. S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989)

    Article  ADS  Google Scholar 

  12. Collot, L., Lefevre-Seguin, V., Brune, M., Raimond, J. M. & Haroche, S. Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres. Europhys. Lett. 23, 327–334 (1993)

    Article  ADS  CAS  Google Scholar 

  13. Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Steed, E. W. & Kimble, H. J. High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247–249 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Himeno, A., Kato, K. & Miya, T. Silica-based planar lightwave circuits. IEEE J. Sel. Top. Quant. 4, 913–924 (1998)

    Article  CAS  Google Scholar 

  15. Delfino, M. & Reifsteck, T. A. Laser activated flow of phosphosilicate glass in integrated circuit devices. Elect. Device Lett. 3, 116–118 (1982)

    Article  ADS  Google Scholar 

  16. McLachlan, A. D. & Meyer, F. P. Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths. Appl. Opt. 26, 1728–1731 (1987)

    Article  ADS  CAS  Google Scholar 

  17. Sheik-bahae, M. & Kwok, H. S. Controlled CO2 laser melting of silicon. J. Appl. Phys. 63, 518–524 (1988)

    Article  ADS  CAS  Google Scholar 

  18. Knight, J. C., Cheung, G., Jacques, F. & Birks, T. A. Phase-matched excitation of whispering-gallery-model resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Michler, P. et al. Laser emission from quantum dots in microdisk structures. Appl. Phys. Lett. 77, 184–186 (2001)

    Article  ADS  Google Scholar 

  21. Gayral, B. et al. High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Appl. Phys. Lett. 75, 1908–1910 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Modal coupling in traveling-wave resonators. Opt. Lett. 27, 1669–1671 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Hansel, W., Hommelhoff, P., Hansch, T. W. & Reichel, J. Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA and the Caltech Lee Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Vahala.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armani, D., Kippenberg, T., Spillane, S. et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003). https://doi.org/10.1038/nature01371

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01371

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing