Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation

Abstract

The ATM protein kinase, mutations of which are associated with the human disease ataxia–telangiectasia, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer or higher-order multimer, with the kinase domain bound to a region surrounding serine 1981 that is contained within the previously described ‘FAT’ domain. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. Most ATM molecules in the cell are rapidly phosphorylated on this site after doses of radiation as low as 0.5 Gy, and binding of a phosphospecific antibody is detectable after the introduction of only a few DNA double-strand breaks in the cell. Activation of the ATM kinase seems to be an initiating event in cellular responses to irradiation, and our data indicate that ATM activation is not dependent on direct binding to DNA strand breaks, but may result from changes in the structure of chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic labelling of ATM in response to ionizing radiation.
Figure 2: Intermolecular autophosphorylation of ATM serine 1981 occurs in vivo after irradiation.
Figure 3: S1981A-ATM has kinase activity but is dominant-inhibitory in cells.
Figure 4: Interaction of ATM domains with proteins.
Figure 5: Kinetics, stoichiometry and detection sensitivity of ATM phosphorylation.
Figure 6: Activation of ATM by chromatin-active agents that do not cause DNA breaks.

Similar content being viewed by others

References

  1. Hartwell, L. H. & Weinert, T. A. Checkpoints: Controls that ensure the order of cell cycle events. Science 246, 629–634 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science 266, 1821–1828 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Elledge, S. J. Cell cycle checkpoints: Preventing an identity crisis. Science 274, 1664–1672 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kastan, M. B. & Lim, D.-S. The many substrates and functions of ATM. Nature Rev. Mol. Cell Biol. 1, 179–186 (2000)

    Article  CAS  Google Scholar 

  5. Shiloh, Y. & Kastan, M. B. ATM: Genome stability, neuronal development, and cancer cross paths. Adv. Cancer Res. 83, 209–254 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Shiloh, Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: Related disorders but genes apart. Annu. Rev. Genet. 31, 635–662 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes Dev. 15, 1067–1077 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389–10394 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim, D.-S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477–482 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhou, B. B. et al. Caffeine abolishes the mammalian G2/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem. 275, 10342–10348 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Taniguchi, T. et al. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109, 459–472 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Kim, S. T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yazdi, P. T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, B., O'Donnell, A. M., Kim, S.-T. & Kastan, M. B. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res. 62, 4588–4591 (2002)

    CAS  PubMed  Google Scholar 

  20. Xu, B., Kim, S.-T. & Kastan, M. B. Involvement of Brca1 in S-phase and G2-phase checkpoints after ionizing irradiation. Mol. Cell. Biol. 21, 3445–3450 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bao, S. et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411, 969–974 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kim, S.-T., Lim, D.-S., Canman, C. E. & Kastan, M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538–37543 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. Sarkaria, J. N. et al. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 58, 4375–4382 (1998)

    CAS  PubMed  Google Scholar 

  24. Meisenhelder, J., Hunter, T., van der Geer, P. et al. in Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) Suppl. 48, Ch. 18.9.1–28 (John Wiley & Sons, USA, 1999)

    Google Scholar 

  25. Bosotti, R., Isacchi, A. & Sonnhammer, E. L. FAT: A novel domain in PIK-related kinases. Trends Biochem. Sci. 25, 225–227 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Cedervall, B. et al. Methods for the quantification of DNA double-strand breaks determined from the distribution of DNA fragment sizes measured by pulsed-field gel electrophoresis. Radiat. Res. 143, 8–16 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Ruiz de Almodovar, J. M., Steel, G. G., Whitaker, S. J. & McMillan, T. J. A comparison of methods for calculating DNA double-strand break induction frequency in mammalian cells by pulsed-field gel electrophoresis. Int. J. Radiat. Biol. 65, 641–649 (1994)

    Article  CAS  PubMed  Google Scholar 

  28. Richardson, C., Elliott, B. & Jasin, M. Chromosomal double-strand breaks introduced in mammalian cells by expression of I-Sce I endonuclease. Methods Mol. Biol. 113, 453–463 (1999)

    CAS  PubMed  Google Scholar 

  29. Roti Roti, J. L. & Wright, W. D. Visualization of DNA loops in nucleoids from HeLa cells: Assays for DNA damage and repair. Cytometry 8, 461–467 (1987)

    Article  CAS  PubMed  Google Scholar 

  30. Jaberaboansari, A., Nelson, G. B., Roti Roti, J. L. & Wheeler, K. T. Postirradiation alterations of neuronal chromatin structure. Radiat. Res. 114, 94–104 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Malyapa, R. S., Wright, W. D., Taylor, Y. C. & Roti Roti, J. L. DNA supercoiling changes and nuclear matrix-associated proteins: Possible role in oncogene-mediated radioresistance. Int. J. Radiat. Oncol. Biol. Phys. 35, 963–973 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. Earnshaw, W. C. & Laemmli, U. K. Architecture of metaphase chromosomes and chromosome scaffolds. J. Cell Biol. 96, 84–93 (1983)

    Article  CAS  PubMed  Google Scholar 

  33. Jeppesen, P., Mitchell, A., Turner, B. & Perry, P. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma 101, 322–332 (1992)

    Article  CAS  PubMed  Google Scholar 

  34. Krajewski, W. A. Alterations in the internucleosomal DNA helical twist in chromatin of human erythroleukemia cells in vivo influences the chromatin higher-order folding. FEBS Lett. 361, 149–152 (1995)

    Article  CAS  PubMed  Google Scholar 

  35. Jensen, P. B. et al. Targeting the cytotoxicity of topoisomerase II-directed epipodophyllotoxins to tumour cells in acidic environments. Cancer Res. 54, 2959–2963 (1994)

    CAS  PubMed  Google Scholar 

  36. Snyder, R. D. Use of catalytic topoisomerase II inhibitors to probe mechanisms of chemical-induced clastogenicity in Chinese hamster V79 cells. Environ. Mol. Mutagen. 35, 13–21 (2000)

    Article  CAS  PubMed  Google Scholar 

  37. Krajewski, W. A. Effect of in vivo histone hyperacetylation on the state of chromatin fibers. J. Biomol. Struct. Dyn. 16, 1097–1106 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: Novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays 17, 423–430 (1995)

    Article  CAS  PubMed  Google Scholar 

  39. Kuo, M. H. & Allis, C. D. Role of histone acetylases and deacetylases in gene regulation. BioEssays 20, 615–626 (1998)

    Article  CAS  PubMed  Google Scholar 

  40. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998)

    Article  CAS  PubMed  Google Scholar 

  41. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, L. N. & Noble, M. E. M. Active and inactive protein kinases: Structural basis for regulation. Cell 85, 149–158 (1996)

    Article  CAS  PubMed  Google Scholar 

  43. De Bondt, H. L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Hu, S. H. et al. Insights into autoregulation from the crystal structure of twitchin kinase. Nature 369, 581–584 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Dodelet, V. C. & Pasquale, E. B. Eph receptors and ephrin ligands: Embryogenesis to tumorigenesis. Oncogene 19, 5614–5619 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. Smith, G. C. M. et al. Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc. Natl Acad. Sci. USA 96, 11134–11139 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vogelstein, B., Pardoll, D. M. & Coffey, D. S. Supercoiled loops and eukaryotic DNA replication. Cell 22, 79–85 (1980)

    Article  CAS  PubMed  Google Scholar 

  48. Ward, W. S., Partin, A. W. & Coffey, D. S. DNA loop domains in mammalian spermatozoa. Chromosoma 98, 153–159 (1989)

    Article  CAS  PubMed  Google Scholar 

  49. Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA 91, 6064–6068 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lindsley, J. E. & Wang, J. C. On the coupling between ATP usage and DNA transport by yeast DNA topoisomerase II. J. Biol. Chem. 268, 8096–8104 (1993)

    CAS  PubMed  Google Scholar 

  51. Alligood, K. J. et al. Monoclonal antibodies generated against recombinant ATM support kinase activity. Hybridoma 19, 317–321 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical assistance of H. Davis, M. Reis and D. Woods. We thank S. Powell, Y. Shiloh and R. Abraham for providing reagents, and all members of the Kastan laboratory and J. Cleveland, R. Ivey, T. Izard, P. McKinnon, D. Coffey and C. Sherr for reading the manuscript or for helpful discussions. This work was supported by grants from the National Institutes of Health and by the American Lebanese Syrian Associated Charities of the St Jude Children's Research Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Kastan.

Ethics declarations

Competing interests

A patent application has been submitted, based on data presented in this manuscript.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakkenist, C., Kastan, M. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003). https://doi.org/10.1038/nature01368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01368

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing