Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental extraction of an entangled photon pair from two identically decohered pairs


Entanglement is considered to be one of the most important resources in quantum information processing schemes, including teleportation1,2,3, dense coding4 and entanglement-based quantum key distribution5. Because entanglement cannot be generated by classical communication between distant parties, distribution of entangled particles between them is necessary. During the distribution process, entanglement between the particles is degraded by the decoherence and dissipation processes that result from unavoidable coupling with the environment. Entanglement distillation and concentration schemes6,7,8,9 are therefore needed to extract pairs with a higher degree of entanglement from these less-entangled pairs; this is accomplished using local operations and classical communication. Here we report an experimental demonstration of extraction of a polarization-entangled photon pair from two decohered photon pairs. Two polarization-entangled photon pairs are generated by spontaneous parametric down-conversion and then distributed through a channel that induces identical phase fluctuations to both pairs; this ensures that no entanglement is available as long as each pair is manipulated individually. Then, through collective local operations and classical communication we extract from the two decohered pairs a photon pair that is observed to be polarization-entangled.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The schematic diagram of our experiment.
Figure 2: Experimental set-up for the polarization-entangled photon-pair source.
Figure 3: Experimental results showing that PPC decoheres individual pairs.
Figure 4: Experimental results showing that the extracted photon pair is entangled.


  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1898 (1993)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Bose, S., Vedral, V. & Knight, P. L. Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Pan, J.-W., Simon, C., Brukner, C. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Yamamoto, T., Koashi, M. & Imoto, N. Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  13. Zhao, Z., Pan, J.-W. & Zhan, M. S. Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  14. Kwiat, P. G., Barraza-Lopez, S., Stefanov, A. & Gisin, N. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Kwiat, P. G. et al. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Kim, Y. H., Kulik, S. P. & Shih, Y. High-intensity pulsed source of space-time and polarization double-entangled photon pairs. Phys. Rev. A 62, 011802 (2000)

    Article  ADS  Google Scholar 

  17. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  18. Bouwmeester, D. et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Pan, J.-W. et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Jennewein, T., Weihs, G., Pan, J.-W. & Zeilinger, A. Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2002)

    Article  ADS  Google Scholar 

  21. Lamas-Linares, A., Howell, J. C. & Bouwmeester, D. Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed sources. Ann. NY Acad. Sci. 755, 91–102 (1995)

    Article  ADS  Google Scholar 

  23. Rarity, J. G. Interference of single photons from separate sources. Ann. NY Acad. Sci. 755, 624–631 (1995)

    Article  ADS  Google Scholar 

  24. Özdemir, Ş. K., Miranowicz, A., Koashi, M. & Imoto, N. Pulse mode projection synthesis: Effects of mode mismatch on optical state truncation and preparation. Phys. Rev. A 66, 053809 (2002)

    Article  ADS  Google Scholar 

  25. Nagata, K., Koashi, M. & Imoto, N. Observables suitable for restricting the fidelity to multipartite maximally entangled states. Phys. Rev. A 65, 042314 (2002)

    Article  ADS  Google Scholar 

  26. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001)

    Article  ADS  Google Scholar 

  27. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Pan, J.-W. & Zeilinger, A. Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Koashi, M., Yamamoto, T. & Imoto, N. Probabilistic manipulation of entangled photons. Phys. Rev. A 63, 030301 (2001)

    Article  ADS  Google Scholar 

Download references


We thank K. Nagata, K. Tamaki, A. Miranowicz and J. Shimamura for helpful discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nobuyuki Imoto.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamamoto, T., Koashi, M., Özdemir, Ş. et al. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing