Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effects of surfactants on spilling breaking waves


Breaking waves markedly increase the rates of air–sea transfer of momentum, energy and mass1,2,3,4. In light to moderate wind conditions, spilling breakers with short wavelengths are observed frequently. Theory and laboratory experiments have shown that, as these waves approach breaking in clean water, a ripple pattern that is dominated by surface tension forms at the crest5,6,7,8,9,10,11,12,13,14. Under laboratory conditions and in theory, the transition to turbulent flow is triggered by flow separation under the ripples, typically without leading to overturning of the free surface15. Water surfaces in nature, however, are typically contaminated by surfactant films that alter the surface tension and produce surface elasticity and viscosity16,17. Here we present the results of laboratory experiments in which spilling breaking waves were generated mechanically in water with a range of surfactant concentrations. We find significant changes in the breaking process owing to surfactants. At the highest concentration of surfactants, a small plunging jet issues from the front face of the wave at a point below the wave crest and entraps a pocket of air on impact with the front face of the wave. The bubbles and turbulence created during this process are likely to increase air–sea transfer.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Measurements of dynamic surface properties.
Figure 2: Two images of a breaking wave in ‘clean’ water.
Figure 3: Images of a surfactant-dominated breaking wave generated in a manner identical to the wave in Fig. 2.
Figure 4: Geometrical properties of the jet.


  1. Cokelet, E. D. Breaking waves. Nature 267, 769–774 (1977)

    ADS  Article  Google Scholar 

  2. Thorpe, S. A. Small-scale processes in the upper ocean boundary layer. Nature 318, 519–522 (1985)

    ADS  Article  Google Scholar 

  3. Melville, W. K. The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech. 28, 279–321 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  4. Jessup, A. T., Zappa, C. J., Loewen, M. R. & Hesany, V. Infrared remote sensing of breaking waves. Nature 385, 52–55 (1997)

    ADS  CAS  Article  Google Scholar 

  5. Okuda, K. Internal flow structure of short wind waves. Part I. On the internal vorticity structure. J. Oceanogr. Soc. Jpn 38, 313–322 (1982)

    Article  Google Scholar 

  6. Ebuchi, N., Kawamura, H. & Toba, Y. Fine structure of laboratory wind–wave surfaces studied using an optical method. Boundary-Layer Meteorol. 39, 133–151 (1987)

    ADS  Article  Google Scholar 

  7. Longuet-Higgins, M. S. Capillary rollers and bores. J. Fluid Mech. 240, 659–679 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  8. Longuet-Higgins, M. S. Shear instability in spilling breakers. Proc. R. Soc. Lond. A 446, 399–409 (1994)

    ADS  Article  Google Scholar 

  9. Duncan, J. H., Philomin, H., Behres, H. & Kimmel, J. The formation of a spilling breaker. Phys. Fluids 6, 2558–2560 (1994)

    ADS  CAS  Article  Google Scholar 

  10. Duncan, J. H., Philomin, V., Qiao, H. & Kimmel, J. The formation of a spilling breaker. Phys. Fluids 6, S2 (1994)

    ADS  Article  Google Scholar 

  11. Longuet-Higgins, M. S. Capillary jumps on deep water. J. Phys. Oceanogr. 29, 1957–1965 (1996)

    ADS  Article  Google Scholar 

  12. Tulin, M. P. in Waves and Nonlinear Processes in Hydrodynamics (eds Grue, J., Gjevik, B. & Weber, J. E.) 177–190 (Kluwer, Dordrecht, 1996)

    Book  Google Scholar 

  13. Duncan, J. H., Qiao, H., Philomin, V. & Wenz, A. Gentle spilling breakers: crest profile evolution. J. Fluid Mech. 379, 191–222 (1999)

    ADS  Article  Google Scholar 

  14. Ceniceros, H. D. & Hou, T. Y. Dynamic generation of capillary waves. Phys. Fluids 11, 1032–1050 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Qiao, H. & Duncan, J. H. Gentle spilling breakers: crest flow-field evolution. J. Fluid Mech. 439, 57–85 (2001)

    ADS  CAS  Article  Google Scholar 

  16. Edwards, D. A., Brenner, H. & Wasan, D. T. Interfacial Transport Process and Rheology 1st edn (Butterworth-Heinemann, Boston, Massachusetts, 1991)

    Google Scholar 

  17. Poskanzer, A. M. & Goodrich, F. C. Surface viscosity of sodium dodecyl sulfate solutions with and without added dodecanol. J. Phys. Chem. 79, 2122–2126 (1975)

    CAS  Article  Google Scholar 

  18. Longuet-Higgins, M. S. Proc. 10th Symp. Naval Hydrodynamics 597–605 (US Government Printing Office, Arlington, Virginia, 1976)

    Google Scholar 

  19. Melville, W. K. & Rapp, R. J. Momentum flux in breaking waves. Nature 317, 514–516 (1985)

    ADS  Article  Google Scholar 

  20. Wei, Y. & Wu, J. In situ measurements of surface tension, wave damping, and wind properties modified by natural films. J. Geophys. Res. 97, 5307–5313 (1992)

    ADS  Article  Google Scholar 

  21. Barger, W. R., Daniel, W. H. & Garrett, W. D. Surface chemical properties of banded sea slicks. Deep-Sea Res. 21, 83–89 (1974)

    Google Scholar 

  22. Longuet-Higgins, M. S. On the disintegration of the jet in a plunging breaker. J. Phys. Oceanogr. 25, 2458–2462 (1995)

    ADS  Article  Google Scholar 

  23. Longuet-Higgins, M. S. & Dommermuth, D. G. Crest instabilities of gravity waves. Part 3. Nonlinear development and breaking. J. Fluid Mech. 336, 33–50 (1997)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  24. Longuet-Higgins, M. S. & Cokelet, E. D. The deformation of steep waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 1–26 (1976)

    ADS  MathSciNet  Article  Google Scholar 

  25. Ceniceros, H. D. The effects of surfactants on the formation and evolution of capillary waves. Phys. Fluids 15, 245–256 (2003)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  26. Sokatch, J. R. Bacterial Physiology and Metabolism (Academic, London, 1969)

    Google Scholar 

  27. Frew, N. M. in The Sea Surface and Global Change (eds Liss, P. S. & Duce, R. A.) 121–172 (Cambridge Univ. Press, Cambridge, 1997)

    Book  Google Scholar 

  28. Miyano, K., Abraham, B. M., Ting, L. & Wasan, D. T. Longitudinal surface waves for the study of dynamic properties of surfactant systems. I. Instrumentation. J. Colloid Interface Sci. 92, 297–302 (1983)

    ADS  CAS  Article  Google Scholar 

  29. Ting, L., Wasan, D. T., Miyano, K. & Xu, S.-Q. Longitudinal surface waves for the study of dynamic properties of surfactant systems. II. Air–solution interface. J. Colloid Interface Sci. 102, 248–259 (1984)

    ADS  CAS  Article  Google Scholar 

  30. Mass, J. T. & Milgram, J. H. Dynamic behavior of natural sea surfactant films. J. Geophys. Res. 103, 15695–15715 (1998)

    ADS  CAS  Article  Google Scholar 

Download references


We thank H. Qiao for preliminary experiments on breaking waves in the presence of surfactants, and G. M. Korenowski for conversations on surfactant chemistry. This work is supported by the Ocean Sciences Division of the National Science Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to James H. Duncan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, X., Duncan, J. The effects of surfactants on spilling breaking waves. Nature 421, 520–523 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing