Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constant elevation of southern Tibet over the past 15 million years

Abstract

The uplift of the Tibetan plateau, an area that is 2,000 km wide, to an altitude of about 5,000 m has been shown to modify global climate1,2,3 and to influence monsoon intensity4,5,6,7,8. Mechanical and thermal models for homogeneous thickening of the lithosphere make specific predictions about uplift rates of the Tibetan plateau9,10, but the precise history of the uplift of the plateau has yet to be confirmed by observations. Here we present well-preserved fossil leaf assemblages from the Namling basin, southern Tibet, dated to 15 Myr ago, which allow us to reconstruct the temperatures within the basin at that time. Using a numerical general circulation model to estimate moist static energy at the location of the fossil leaves, we reconstruct the elevation of the Namling basin 15 Myr ago to be 4,689 ± 895 m or 4,638 ± 847 m, depending on the reference data used. This is comparable to the present-day altitude of 4,600 m. We conclude that the elevation of the southern Tibetan plateau probably has remained unchanged for the past 15 Myr.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upper part of the 300-m logged section from Namling, indicating the stratigraphical position and ages of key dated samples.
Figure 2: CLAMP enthalpy vector score against observed enthalpy regression for the Physg3br data set.

Similar content being viewed by others

References

  1. Kutzbach, J. E., Guetter, P. J., Ruddiman, W. F. & Prell, W. L. The sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: Numerical experiments. J. Geophys. Res. 94, 18393–18407 (1989)

    Article  ADS  Google Scholar 

  2. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate change. Nature 359, 117–122 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Rev. Geophys. 31, 357–396 (1993)

    Article  ADS  Google Scholar 

  4. Burbank, D. W., Derry, L. A. & France-Lanord, C. Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature 364, 48–50 (1993)

    Article  ADS  Google Scholar 

  5. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Lovera, O. M. Activation of the Nyainquentanghla Shear Zone: implications for uplift of the southern Tibet Plateau. Tectonics 14, 658–676 (1995)

    Article  ADS  Google Scholar 

  6. Turner, S. et al. Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol. 37, 45–71 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Qiang, X. K., Li, Z. X., Powell, C. McA. & Zheng, H. B. Magnetostratigraphic record of the Late Miocene onset of the east Asian monsoon and Pliocene uplift of northern Tibet. Earth Planet. Sci. Lett. 187, 83–93 (2001)

    Article  ADS  CAS  Google Scholar 

  8. An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalayan–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001)

    Article  ADS  CAS  Google Scholar 

  9. England, P. & Houseman, G. A. Extension during continental convergence, with application to the Tibetan Plateau. J. Geophys. Res. 94, 17561–17579 (1989)

    Article  ADS  Google Scholar 

  10. Platt, J. P. & England, P. C. Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. Am. J. Sci. 294, 307–336 (1994)

    Article  ADS  Google Scholar 

  11. Quade, J., Rae, L., DeCelles, P. G. & Ojha, T. P. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989)

    Article  ADS  Google Scholar 

  12. Kroon, D., Steens, T. & Troelstra, S. R. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc. ODP Sci. Res. 117, 257–263 (1991)

    Google Scholar 

  13. Rowley, D. B. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145, 1–13 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Murphy, M. A. et al. Did the Indo-Asian collision alone create the Tibetan plateau? Geology 25, 719–722 (1997)

    Article  ADS  Google Scholar 

  15. Tapponier, P. et al. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671–1677 (2001)

    Article  ADS  Google Scholar 

  16. Coleman, M. & Hodges, K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum estimate for east–west extension. Nature 374, 49–52 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Blisniuk, P. M. et al. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature 412, 628–632 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Rowley, D. B., Pierrehumbert, B. S. & Currie, B. S. A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of High Himalaya since the Late Miocene. Earth Planet. Sci. Lett. 188, 253–268 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Williams, H. M., Turner, S., Kelley, S. & Harris, N. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology 29, 339–342 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Wolfe, J. A. A method for obtaining climate parameters from leaf assemblages. US Geol. Surv. Bull. 2040, 71 (1993)

    Google Scholar 

  21. Wolfe, J. A., Forest, C. E. & Molnar, P. Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geol. Soc. Am. Bull. 110, 664–678 (1998)

    Article  ADS  Google Scholar 

  22. Meyer, H. W. Lapse rates and other variables applied to estimating paleoaltitudes from fossil floras. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 71–99 (1992)

    Article  Google Scholar 

  23. Forest, C. E., Molnar, P. & Emanuel, K. A. Palaeoaltimetry for energy conservation principles. Nature 374, 347–350 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Matsuo, H. in Tertiary Floras of Japan Vol. 1, Miocene Floras 219–243 (Geological Survey of Japan, Tokyo, 1963)

  25. Ishida, S. The Noroshi flora of Noto Peninsula, central Japan. Mem. Faculty Sci. Kyoto Univ. Ser. Geol. Mineral. 37, 1–112 (1970)

    Google Scholar 

Download references

Acknowledgements

We thank T. Tanai and K. Uemura for advice on the Japanese floras, and the National Environmental Research Council and Ferguson Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Spicer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spicer, R., Harris, N., Widdowson, M. et al. Constant elevation of southern Tibet over the past 15 million years. Nature 421, 622–624 (2003). https://doi.org/10.1038/nature01356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01356

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing