Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plants lacking the main light-harvesting complex retain photosystem II macro-organization


Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts1. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure—the major trimeric complexes (LHCII)2 that bind 70% of PSII chlorophyll and three minor monomeric complexes3—which together form PSII supercomplexes4,5,6. The antenna complexes are essential for collecting sunlight and regulating photosynthesis7,8,9, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers10 have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: PSII membrane composition.
Figure 2: PSII membrane spectra.
Figure 3: Average projections of the PSII complexes from Arabidopsis Lhcb2 plants.
Figure 4: Final result of image analysis of two-dimensional crystalline PSII complexes from Arabidopsis wild-type and Lhcb2 antisense plants.


  1. Hankamer, B., Barber, J. & Boekema, E. J. Structure and membrane organisation of photosystem II in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 641–671 (1997)

    CAS  Article  Google Scholar 

  2. Kühlbrandt, W. & Wang, D. N. Three dimensional structure of plant light-harvesting complex by electron crystallography. Nature 350, 130–134 (1991)

    ADS  Article  Google Scholar 

  3. Peter, G. F. & Thornber, J. P. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J. Biol. Chem. 266, 16745–16754 (1991)

    CAS  PubMed  Google Scholar 

  4. Boekema, E. J., Van Roon, H., Calkoen, F., Bassi, R. & Dekker, J. P. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38, 2233 (1999)

    CAS  Article  Google Scholar 

  5. Boekema, E. J., Van Roon, H., Van Breemen, J. F. L. & Dekker, J. P. Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Eur. J. Biochem. 266, 444–452 (1999)

    CAS  Article  Google Scholar 

  6. Nield, J., Orlova, E. V., Morris, E. P., Gowen, B., Van Heel, M. & Barber, J. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Struct. Biol. 7, 44–47 (2000)

    CAS  Article  Google Scholar 

  7. Jansson, S. The light-harvesting chlorophyll a/b-binding proteins. Biochim. Biophys. Acta 1184, 1–19 (1994)

    CAS  Article  Google Scholar 

  8. Paulsen, H. Chlorophyll a/b binding proteins. Photochem. Photobiol. 62, 367–382 (1995)

    CAS  Article  Google Scholar 

  9. Horton, P., Ruban, A. V. & Walters, R. G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 (1996)

    CAS  Article  Google Scholar 

  10. Andersson, J. et al. Absence of the main light harvesting complex of photosystem II affects photosynthetic function. Plant J. (in the press)

  11. Barber, J. Photosystem II: a multisubunit membrane protein that oxidizes water. Curr. Opin. Struct. Biol. 12, 523–530 (2002)

    CAS  Article  Google Scholar 

  12. Zouni, A. Crystal structure of photosystem II from Synechoccus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001)

    ADS  CAS  Article  Google Scholar 

  13. Boekema, E. J., Van Breemen, J. F. L., Van Roon, H. & Dekker, J. P. Arrangement of photosystem II in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J. Mol. Biol. 301, 1123–1133 (2000)

    CAS  Article  Google Scholar 

  14. Hankamer, B. et al. Isolation and characterization of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo. Eur. J. Biochem. 243, 422–429 (1997)

    CAS  Article  Google Scholar 

  15. Allen, J. F. & Forsberg, J. Molecular recognition in thylakoid structure and function. Trends Plant Sci. 6, 317–326 (2001)

    CAS  Article  Google Scholar 

  16. Haldrup, A., Jensen, P. E., Lunde, C. & Scheller, H. V. Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci. 6, 301–305 (2001)

    CAS  Article  Google Scholar 

  17. Jansson, S. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4, 236–240 (1999)

    CAS  Article  Google Scholar 

  18. Croce, R., Canino, G., Ros, F. & Bassi, R. Chromophore organisation in the higher plant photosystem II antenna protein CP26. Biochemistry 41, 7334–7343 (2002)

    CAS  Article  Google Scholar 

  19. Yakushevska, A. E. et al. Supramolecular organisation of photosystem II and its associated light harvesting antenna in Arabidopsis thaliana. Eur. J. Biochem. 268, 6020–6028 (2001)

    CAS  Article  Google Scholar 

  20. Caffrari, S., Croce, R., Cattivelli, L. & Bassi, R. The Lhcb1, 2 and 3 gene products, components of the trimeric antenna complex of higher plant photosystem II, have distinct biochemical and spectroscopic properties. Proc. 12th Int. Congr. Photosyn., S31–034 (CSIRO, Canberra, 2001)

  21. Hobe, S., Foster, R., Klingler, J. & Paulsen, H. N-proximal sequence motif in light-harvesting chlorophyll-a/b-binding protein is essential for trimerisation of the light harvesting chlorophyll a/b complex. Biochemistry 34, 10224–10228 (1995)

    CAS  Article  Google Scholar 

  22. Kuttkat, A., Kartmann, A., Hobe, S. & Paulsen, H. The C-terminal domain of light-harvesting chlorophyll-a/b-binding protein is involved in the stabilisation of trimeric light harvesting complex. Eur. J. Biochem. 242, 288–292 (1996)

    CAS  Article  Google Scholar 

  23. Garab, G. & Mustardy, L. Role of LHCII-containing macrodomains in the structure, function and dynamics of grana. Aust. J. Plant Physiol. 27, 648–658 (1999)

    Google Scholar 

  24. Bibby, T., Nield, J. & Barber, J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412, 743–745 (2001)

    ADS  CAS  Article  Google Scholar 

  25. Boekema, E. J. et al. A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412, 745–748 (2001)

    ADS  CAS  Article  Google Scholar 

  26. Walters, R. G., Rogers, J. J. M., Shephard, F. & Horton, P. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta 209, 517–527 (1999)

    CAS  Article  Google Scholar 

  27. Berthold, D. A., Babcock, G. T. & Yocum, C. F. A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron transport properties. FEBS Lett. 134, 231–234 (1981)

    CAS  Article  Google Scholar 

  28. Ruban, A. V., Lee, P. J., Wentworth, M., Young, A. J. & Horton, P. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J. Biol. Chem. 274, 10458–10465 (1999)

    CAS  Article  Google Scholar 

  29. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    ADS  CAS  Article  Google Scholar 

  30. Andersson, J., Walters, R. G., Horton, P. & Jansson, S. Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell 13, 1193–1204 (2001)

    CAS  Article  Google Scholar 

Download references


We wish to thank R. Walters for discussions. This work was supported by the UK Biotechnology and Biological Sciences Research Council, the UK Joint Infrastructure Fund, the Netherlands Foundation for Scientific Research (NWO) through the Foundation for Life and Earth Sciences (ALW), and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning and the Foundation for Strategic Research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. Horton.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruban, A., Wentworth, M., Yakushevska, A. et al. Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Nature 421, 648–652 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing