Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death


Mutations in ion channels involved in the generation and termination of action potentials constitute a family of molecular defects that underlie fatal cardiac arrhythmias in inherited long-QT syndrome1. We report here that a loss-of-function (E1425G) mutation in ankyrin-B (also known as ankyrin 2), a member of a family of versatile membrane adapters2, causes dominantly inherited type 4 long-QT cardiac arrhythmia in humans. Mice heterozygous for a null mutation in ankyrin-B are haploinsufficient and display arrhythmia similar to humans. Mutation of ankyrin-B results in disruption in the cellular organization of the sodium pump, the sodium/calcium exchanger, and inositol-1,4,5-trisphosphate receptors (all ankyrin-B-binding proteins), which reduces the targeting of these proteins to the transverse tubules as well as reducing overall protein level. Ankyrin-B mutation also leads to altered Ca2+ signalling in adult cardiomyocytes that results in extrasystoles, and provides a rationale for the arrhythmia. Thus, we identify a new mechanism for cardiac arrhythmia due to abnormal coordination of multiple functionally related ion channels and transporters.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Loss-of-function mutation in ankyrin-B in type 4 long-QT syndrome.
Figure 2: Sinus bradycardia, heart rate variability and sudden cardiac death in AnkB+/- mice.
Figure 3: Coordinate reduction of ankyrin-B and ankyrin-B-associated proteins at Z-line/T-tubules of adult AnkB+/- cardiomyocytes.
Figure 4: Ca2+ signalling in adult AnkB+/- ventricular cardiomyocytes.


  1. Keating, M. T. & Sanguinetti, M. C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001)

    CAS  Article  Google Scholar 

  2. Mohler, P. J., Gramolini, A. O. & Bennett, V. Ankyrins. J. Cell Sci. 115, 1565–1566 (2002)

    CAS  PubMed  Google Scholar 

  3. Schott, J. J. et al. Mapping of a gene for long QT syndrome to chromosome 4q25-27. Am. J. Hum. Genet. 57, 1114–1122 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tuvia, S., Buhusi, M., Davis, L., Reedy, M. & Bennett, V. Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins. J. Cell Biol. 147, 995–1008 (1999)

    CAS  Article  Google Scholar 

  5. Mohler, P. J., Gramolini, A. O. & Bennett, V. The Ankyrin-B C-terminal domain determines activity of Ankyrin-B/G chimeras in rescue of abnormal inositol 1,4,5-trisphosphate and ryanodine receptor distribution in ankyrin-B (-/-) neonatal cardiomyocytes. J. Biol. Chem. 277, 10599–10607 (2002)

    CAS  Article  Google Scholar 

  6. Towbin, J. A. & Vatta, M. Molecular biology and the prolonged QT syndromes. Am. J. Med. 110, 385–398 (2001)

    CAS  Article  Google Scholar 

  7. Casimiro, M. C. et al. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc. Natl Acad. Sci. USA 98, 2526–2531 (2001)

    ADS  CAS  Article  Google Scholar 

  8. Jenkins, S. M. & Bennett, V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J. Cell Biol. 155, 739–746 (2001)

    CAS  Article  Google Scholar 

  9. Bennett, V. & Baines, A. J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81, 1353–1392 (2001)

    CAS  Article  Google Scholar 

  10. Frank, J. S. & Garfinkel, A. in The Myocardium (ed. Langer, G. A.) 1–32 (Academic, San Diego, California, 1997)

    Book  Google Scholar 

  11. Bers, D. M. Excitation-Contraction Coupling and Cardiac Contractile Force (Kluwer, Dordrecht, 2001)

    Book  Google Scholar 

  12. Marks, A. R., Priori, S., Memmi, M., Kontula, K. & Laitinen, P. J. Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J. Cell Physiol. 190, 1–6 (2002)

    CAS  Article  Google Scholar 

  13. Blaustein, M. P. & Lederer, W. J. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)

    CAS  Article  Google Scholar 

  14. Reuter, H. et al. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 90, 305–308 (2002)

    CAS  Article  Google Scholar 

  15. Philipson, K. D. & Nicoll, D. A. Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 (2000)

    CAS  Article  Google Scholar 

  16. Santana, L. F., Kranias, E. G. & Lederer, W. J. Calcium sparks and excitation-contraction coupling in phospholamban-deficient mouse ventricular myocytes. J. Physiol. 503, 21–29 (1997)

    CAS  Article  Google Scholar 

  17. Santana, L. F., Gomez, A. M. & Lederer, W. J. Ca2+ flux through promiscuous cardiac Na+ channels: slip-mode conductance. Science 279, 1027–1033 (1998)

    ADS  CAS  Article  Google Scholar 

  18. Gomez, A. M. et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276, 800–806 (1997)

    CAS  Article  Google Scholar 

  19. duBell, W. H., Lederer, W. J. & Rogers, T. B. Dynamic modulation of excitation-contraction coupling by protein phosphatases in rat ventricular myocytes. J. Physiol. 493, 793–800 (1996)

    CAS  Article  Google Scholar 

Download references


We thank the type 4 long-QT family for participation. Research support was provided by the Howard Hughes Medical Institute, NIH, the Muscular Dystrophy Association, Canadian Institutes of Health, the Institut National de la Santé et de la Recherche Médicale (INSERM), and the programme Hospitalier de Recherche Clinique. We also thank C. Kontos and B. Knollman for discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vann Bennett.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohler, P., Schott, JJ., Gramolini, A. et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing