Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spectral signature of cosmological infall of gas around the first quasars

Abstract

Recent observations have shown that, only a billion years after the Big Bang, the Universe was already lit up by bright quasars1 fuelled by the infall of gas onto supermassive black holes. The masses of these early black holes are inferred from their luminosities to be >109 solar masses (M), which is a difficult theoretical challenge to explain. Like nearby quasars, the early objects could have formed in the central cores of massive host galaxies. The formation of these hosts could be explained if, like local large galaxies, they were assembled gravitationally inside massive (> 1012M) haloes of dark matter2. There has hitherto been no observational evidence for the presence of these massive hosts or their surrounding haloes. Here we show that the cosmic gas surrounding each halo must respond to its strong gravitational pull, where absorption by the infalling hydrogen produces a distinct spectral signature. That signature can be seen in recent data3,4.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic illustration of how infall produces a unique spectral signature.
Figure 2: Comparison between models of cosmological infall and observed quasar spectra.

References

  1. Fan, X. et al. Survey of z > 5.8 quasars in the Sloan digital sky survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z 6. Astron. J. 122, 2833–2849 (2001)

    ADS  Article  Google Scholar 

  2. Barkana, R. & Loeb, A. In the beginning: the first sources of light and the reionization of the universe. Phys. Rep. 349, 125–238 (2001)

    ADS  CAS  Article  Google Scholar 

  3. Zheng, W. et al. Five high-redshift quasars discovered in commissioning imaging data of the Sloan Digital Sky Survey. Astron. J. 120, 1607–1611 (2000)

    ADS  Article  Google Scholar 

  4. Becker, R. H. et al. Evidence for reionization at z 6: Detection of a Gunn-Peterson trough in a z = 6.28 quasar. Astron. J. 122, 2850–2857 (2001)

    ADS  Article  Google Scholar 

  5. Loeb, A. & Eisenstein, D. J. Probing early clustering with Lyα absorption lines beyond the quasar redshift. Astrophys. J. 448, 17–26 (1995)

    ADS  CAS  Article  Google Scholar 

  6. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, L9–L12 (2000)

    ADS  Article  Google Scholar 

  7. Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740–753 (2002)

    ADS  Article  Google Scholar 

  8. Wyithe, J. S. B., Loeb, A. A physical model for the luminosity function of high-redshift quasars. Astrophys. J. (in the press)

  9. Vanden Berk, D. E. et al. Composite quasar spectra from the Sloan Digital Sky Survey. Astron. J. 122, 549–564 (2001)

    ADS  Article  Google Scholar 

  10. Telfer, R. C., Zheng, W., Kriss, G. A. & Davidsen, A. F. The rest-frame extreme-ultraviolet spectral properties of quasi-stellar objects. Astrophys. J. 565, 773–785 (2002)

    ADS  CAS  Article  Google Scholar 

  11. Yuan, W., Brinkmann, W., Siebert, J. & Voges, W. Broad band energy distribution of ROSAT detected quasars. II. Radio-quiet objects. Astron. Astrophys. 330, 108–122 (1998)

    ADS  Google Scholar 

  12. Abel, T. & Haehnelt, M. G. Radiative transfer effects during photoheating of the intergalactic medium. Astrophys. J. 520, L13–L16 (1999)

    ADS  Article  Google Scholar 

  13. Fan, X. et al. Evolution of the ionizing background and the epoch of reionization from the spectra of z 6 quasars. Astron. J. 123, 1247–1257 (2002)

    ADS  Article  Google Scholar 

  14. Barkana, R. Did the universe reionize at redshift six? New Astron. 7, 85–100 (2002)

    ADS  CAS  Article  Google Scholar 

  15. Miralda-Escudé, J. Reionization of the intergalactic medium and the damping wing of the Gunn-Peterson trough. Astrophys. J. 501, 15–22 (1998)

    ADS  Article  Google Scholar 

  16. Wyithe, J. S. B. & Loeb, A. Magnification of light from many distant quasars by gravitational lenses. Nature 417, 923–925 (2002)

    ADS  CAS  Article  Google Scholar 

  17. Gunn, J. E. & Gott, J. R. On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1–19 (1972)

    ADS  Article  Google Scholar 

  18. Bertschinger, E. Self-similar secondary infall and accretion in an Einstein–de Sitter universe. Astrophys. J. Suppl. 58, 39–65 (1985)

    ADS  Article  Google Scholar 

  19. Keshet, U., Waxman, E., Loeb, A., Springel, V., Hernquist, L. Gamma-rays from intergalactic shocks. Astrophys. J. (in the press)

  20. Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the universe. Science 295, 93–98 (2002)

    ADS  CAS  Article  Google Scholar 

  21. Scharf, C. A., Mukherjee, R. A statistical detection of gamma-ray emission from galaxy clusters: implications for the gamma-ray background and structure formation. Astrophys. J. 580, 154–163 (2002)

    ADS  Article  Google Scholar 

  22. Loeb, A. & Waxman, E. Cosmic γ-ray background from structure formation in the intergalactic medium. Nature 405, 156–158 (2000)

    ADS  CAS  Article  Google Scholar 

  23. Gunn, J. E. & Peterson, B. A. On the density of neutral hydrogen in intergalactic space. Astrophys. J. 142, 1633–1641 (1965)

    ADS  CAS  Article  Google Scholar 

  24. Bajtlik, S., Duncan, R. C. & Ostriker, J. P. Quasar ionization of Lyα clouds—the proximity effect, a probe of the ultraviolet background at high redshift. Astrophys. J. 327, 570–583 (1988)

    ADS  CAS  Article  Google Scholar 

  25. Haiman, Z. The detectability of high-redshift Lyα emission lines prior to the reionization of the universe. Astrophys. J. 576, L1–L4 (2002)

    ADS  Article  Google Scholar 

  26. Miralda-Escudé, J., Haehnelt, M. & Rees, M. J. Reionization of the inhomogeneous universe. Astrophys. J. 530, 1–16 (2000)

    ADS  Article  Google Scholar 

  27. Loeb, A. & Rybicki, G. B. Scattered Lyman alpha radiation around sources before cosmological reionization. Astrophys. J. 524, 527–535 (1999)

    ADS  CAS  Article  Google Scholar 

  28. Haiman, Z. & Rees, M. J. Extended Lyman alpha emission around young quasars: A constraint on galaxy formation. Astrophys. J. 556, 87–92 (2001)

    ADS  CAS  Article  Google Scholar 

  29. Pentericci, L. et al. VLT optical and near-infrared observations of the z = 6.28 quasar SDSS J1030 + 0524. Astron. J. 123, 2151–2158 (2002)

    ADS  CAS  Article  Google Scholar 

  30. Brotherton, M. S., Wills, B. J., Steidel, C. C. & Sargent, W. L. W. Statistics of QSO broad emission-line profiles. 2: The C IV wavelength 1549, C III wavelength 1909, and MG II wavelength 2798 lines. Astrophys. J. 423, 131–142 (1994)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Turner and H. Netzer for discussions, and are grateful for the hospitality of the Institute for Advanced Study where this work was completed. R.B. acknowledges the support of an Alon Fellowship at Tel Aviv University and of the Israel Science Foundation. A.L. acknowledges support from the Institute for Advanced Study and a John Simon Guggenheim Memorial Fellowship. This work was also supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rennan Barkana or Abraham Loeb.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barkana, R., Loeb, A. Spectral signature of cosmological infall of gas around the first quasars. Nature 421, 341–343 (2003). https://doi.org/10.1038/nature01330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01330

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing