Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The inflammatory reflex

Abstract

Inflammation is a local, protective response to microbial invasion or injury. It must be fine-tuned and regulated precisely, because deficiencies or excesses of the inflammatory response cause morbidity and shorten lifespan. The discovery that cholinergic neurons inhibit acute inflammation has qualitatively expanded our understanding of how the nervous system modulates immune responses. The nervous system reflexively regulates the inflammatory response in real time, just as it controls heart rate and other vital functions. The opportunity now exists to apply this insight to the treatment of inflammation through selective and reversible 'hard-wired' neural systems.

“The mind has great influence over the body, and maladies often have their origin there.” Molière (1622–1673).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The cholinergic anti-inflammatory pathway.
Figure 2: Diffusible versus neural anti-inflammatory pathways.
Figure 3: Wiring of the inflammatory reflex.
Figure 4: Targeting therapies to the cholinergic anti-inflammatory pathway.

References

  1. Tracey, K. J. et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330, 662–664 (1987).

    ADS  CAS  PubMed  Google Scholar 

  2. Tracey, K. J. et al. Shock and tissue injury induced by recombinant human cachectin. Science 234, 470–474 (1986).

    ADS  CAS  PubMed  Google Scholar 

  3. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).

    CAS  PubMed  Google Scholar 

  4. Tracey, K. J., Vlassara, H. & Cerami, A. Cachectin/tumour necrosis factor. Lancet i, 1122–1126 (1989).

    Google Scholar 

  5. Tracey, K. J. & Abraham, E. From mouse to man: or what have we learned about cytokine-based anti-inflammatory therapies? Shock 11, 224–225 (1999).

    CAS  PubMed  Google Scholar 

  6. Andersson, U. et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192, 565–570 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ulloa, L. et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc. Natl Acad. Sci. USA 99, 12351–12356 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, H., Yang, H., Czura, C. J., Sama, A. E. & Tracey, K. J. HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit Care Med. 164, 1768–1773 (2001).

    CAS  PubMed  Google Scholar 

  9. Lantz, M., Gullberg, U., Nilsson, E. & Olsson, I. Characterization in vitro of a human tumor necrosis factor-binding protein. A soluble form of a tumor necrosis factor receptor. J. Clin. Invest. 86, 1396 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsunawaki, S., Sporn, M., Ding, A. & Nathan, C. Deactivation of macrophages by transforming growth factor-β. Nature 334, 260–262 (1988).

    ADS  CAS  PubMed  Google Scholar 

  11. Van der, P. T., Coyle, S. M., Barbosa, K., Braxton, C. C. & Lowry, S. F. Epinephrine inhibits tumor necrosis factor-α and potentiates interleukin 10 production during human endotoxemia. J. Clin. Invest 97, 713–719 (1996).

    Google Scholar 

  12. Scheinman, R. I., Cogswell, P. C., Lofquist, A. K. & Baldwin, A. S. Jr Role of transcriptional activation of IκBκ in mediation of immunosuppression by glucocorticoids. Science 270, 283–286 (1995).

    ADS  CAS  PubMed  Google Scholar 

  13. Chrousos, G. P. The stress response and immune function: clinical implications. The 1999 Novera H. Spector Lecture. Ann. NY Acad. Sci. 917, 38–67 (2000).

    ADS  CAS  PubMed  Google Scholar 

  14. Madden, K. S., Sanders, V. M. & Felten, D. L. Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu. Rev. Pharmacol. Toxicol. 35, 417–448 (1995).

    CAS  PubMed  Google Scholar 

  15. Zhang, M., Borovikova, L. V., Wang, H., Metz, C. & Tracey, K. J. Spermine inhibition of monocyte activation and inflammation. Mol. Med. 5, 595–605 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bertini, R., Bianchi, M. & Ghezzi, P. Adrenalectomy sensitizes mice to the lethal effects of interleukin 1 and tumor necrosis factor. J. Exp. Med. 167, 1708–1712 (1988).

    CAS  PubMed  Google Scholar 

  17. Butler, L. D. et al. Neuroendocrine regulation of in vivo cytokine production and effects: I. In vivo regulatory networks involving the neuroendocrine system, interleukin-1 and tumor necrosis factor-α. J. Neuroimmunol. 24, 143–153 (1989).

    CAS  PubMed  Google Scholar 

  18. Bloom, O. et al. Hypophysectomy, high tumor necrosis factor levels, and hemoglobinemia in lethal endotoxemic shock. Shock 10, 395–400 (1998).

    CAS  PubMed  Google Scholar 

  19. Sternberg, E. M. et al. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc. Natl Acad. Sci. USA 86, 2374–2378 (1989).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Webster, J. I., Tonelli, L. & Sternberg, E. M. Neuroendocrine regulation of immunity. Annu. Rev. Immunol. 20, 125–163 (2002).

    CAS  PubMed  Google Scholar 

  21. Davidson, N. J. et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J. Exp. Med. 184, 241–251 (1996).

    CAS  PubMed  Google Scholar 

  22. Johansson, A. C., Hansson, A. S., Nandakumar, K. S., Backlund, J. & Holmdahl, R. IL-10-deficient B10. Q mice develop more severe collagen-induced arthritis, but are protected from arthritis induced with anti-type II collagen antibodies. J. Immunol. 167, 3505–3512 (2001).

    CAS  PubMed  Google Scholar 

  23. Wexler BC, Dolgin AE & Tryczynski EW . Effects of a bacterial polysaccharide (Piromen) on the pituitary-adrenal axis: adrenal ascorbic acid, cholesterol and histologic alterations. Endocrinology 61, 300–308 (1957).

    CAS  PubMed  Google Scholar 

  24. Besedovsky, H., Sorkin, E., Felix, D. & Haas, H. Hypothalamic changes during the immune response. Eur. J. Immunol. 7, 323–325 (1977).

    CAS  PubMed  Google Scholar 

  25. Blalock, J. E. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev. 69, 1–32 (1989).

    CAS  PubMed  Google Scholar 

  26. Breder, C. D., Dinarello, C. A. & Saper, C. B. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 240, 321–324 (1988).

    ADS  CAS  PubMed  Google Scholar 

  27. Breder, C. D. et al. Regional induction of tumor necrosis factor α expression in the mouse brain after systemic lipopolysaccharide administration. Proc. Natl Acad. Sci. USA 91, 11393–11397 (1994).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Besedovsky, H., del Rey, A., Sorkin, E. & Dinarello, C. A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652–654 (1986).

    ADS  CAS  PubMed  Google Scholar 

  29. Watkins, L. R. & Maier, S. F. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 82, 981–1011 (2002).

    CAS  PubMed  Google Scholar 

  30. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    ADS  CAS  PubMed  Google Scholar 

  31. Bellinger, D. L., Lorton, D., Lubahn, C. & Felten, D. L. in Psychoneuroimmunology (eds Ader R., Felten, D. L. & Cohen, N) 55–112 (Academic, San Diego, 2001).

    Google Scholar 

  32. Bernik, T. R. et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 195, 781–788 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Borovikova, L. V. et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton. Neurosci. 85, 141–147 (2000).

    CAS  PubMed  Google Scholar 

  34. Sato, K. Z. et al. Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci. Lett. 266, 17–20 (1999).

    CAS  PubMed  Google Scholar 

  35. Sato, E., Koyama, S., Okubo, Y., Kubo, K. & Sekiguchi, M. Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity. Am. J. Physiol. 274, L970–L979 (1998).

    CAS  PubMed  Google Scholar 

  36. Wessler, I., Kirkpatrick, C. J. & Racke, K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol. Ther. 77, 59–79 (1998).

    CAS  PubMed  Google Scholar 

  37. Kawashima, K. & Fujii, T. Extraneuronal cholinergic system in lymphocytes. Pharmacol. Ther. 86, 29–48 (2000).

    CAS  PubMed  Google Scholar 

  38. Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A. & Jensen, R. A. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nature Neurosci. 2, 94–98 (1999).

    CAS  PubMed  Google Scholar 

  39. Blalock, J. E. The immune system as a sensory organ. J. Immunol. 132, 1067–1070 (1984).

    CAS  PubMed  Google Scholar 

  40. Blalock, J. E. Shared ligands and receptors as a molecular mechanism for communication between the immune and neuroendocrine systems. Ann. NY Acad. Sci. 741, 292–298 (1994).

    ADS  CAS  PubMed  Google Scholar 

  41. Goehler, L. E. et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 85, 49–59 (2000).

    CAS  PubMed  Google Scholar 

  42. Hermann, G. E., Emch, G. S., Tovar, C. A. & Rogers, R. C. c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve. Am. J. Physiol. Regul. Integr. Comp Physiol. 280, R289–R299 (2001).

    CAS  PubMed  Google Scholar 

  43. Emch, G. S., Hermann, G. E. & Rogers, R. C. TNF-α activates solitary nucleus neurons responsive to gastric distension. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G582–G586 (2000).

    CAS  PubMed  Google Scholar 

  44. Watkins, L. R. & Maier, S. F. Implications of immune-to-brain communication for sickness and pain. Proc. Natl Acad. Sci. USA 96, 7710–7713 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Watkins, L. R. et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 183, 27–31 (1995).

    CAS  PubMed  Google Scholar 

  46. Hansen, M. K. et al. Effects of vagotomy on lipopolysaccharide-induced brain interleukin-1β protein in rats. Auton. Neurosci. 85, 119–126 (2000).

    CAS  PubMed  Google Scholar 

  47. Hansen, M. K., O'Connor, K. A., Goehler, L. E., Watkins, L. R. & Maier, S. F. The contribution of the vagus nerve in interleukin-1β-induced fever is dependent on dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R929–R934 (2001).

    CAS  PubMed  Google Scholar 

  48. Romanovsky, A. A. Thermoregulatory manifestations of systemic inflammation: lessons from vagotomy. Auton. Neurosci. Basic Clin. 85, 39–48 (2000).

    CAS  Google Scholar 

  49. Goehler, L. E. et al. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res. Bull. 43, 357–364 (1997).

    CAS  PubMed  Google Scholar 

  50. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  51. Gordon, F. J. Effect of nucleus tractus solitarius lesions on fever produced by interleukin-1β. Auton. Neurosci. 85, 102–110 (2000).

    CAS  PubMed  Google Scholar 

  52. Molina, P. E., Bagby, G. J. & Stahls, P. Hemorrhage alters neuroendocrine, hemodynamic, and compartment-specific TNF responses to LPS. Shock 16, 459–465 (2001).

    CAS  PubMed  Google Scholar 

  53. Molina, P. E. Noradrenergic inhibition of TNF upregulation in hemorrhagic shock. Neuroimmunomodulation 9, 125–133 (2001).

    CAS  PubMed  Google Scholar 

  54. Woiciechowsky, C. et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nature Med. 4, 808–813 (1998).

    CAS  PubMed  Google Scholar 

  55. Koizumi, K., Terui, N., Kollai, M. & Brooks, C. M. Functional significance of coactivation of vagal and sympathetic cardiac nerves. Proc. Natl Acad. Sci. USA 79, 2116–2120 (1982).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bianchi, M. et al. Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone. J. Exp. Med. 183, 927–936 (1996).

    CAS  PubMed  Google Scholar 

  57. Bianchi, M. et al. An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality. Mol. Med. 1, 254–266 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tracey, K. J. Suppression of TNF and other proinflammatory cytokines by the tetravalent guanylhydrazone CNI-1493. Prog. Clin. Biol. Res. 397, 335–343 (1998).

    CAS  PubMed  Google Scholar 

  59. Hommes, D. et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease. Gastroenterology 122, 7–14 (2002).

    CAS  PubMed  Google Scholar 

  60. Tracey, K. J., Czura, C. J. & Ivanova, S. Mind over immunity. FASEB J. 15, 1575–1576 (2001).

    CAS  PubMed  Google Scholar 

  61. Delgado, H. R. et al. Inhibition of systemic inflammation by central action of the neuropeptide α-melanocyte-stimulating hormone. Neuroimmunomodulation 6, 187–192 (1999).

    Google Scholar 

  62. Ceriani, G., Macaluso, A., Catania, A. & Lipton, J. M. Central neurogenic antiinflammatory action of α-MSH: modulation of peripheral inflammation induced by cytokines and other mediators of inflammation. Neuroendocrinology 59, 138–143 (1994).

    CAS  PubMed  Google Scholar 

  63. Catania, A., Arnold, J., Macaluso, A., Hiltz, M. E. & Lipton, J. M. Inhibition of acute inflammation in the periphery by central action of salicylates. Proc. Natl Acad. Sci. USA 88, 8544–8547 (1991).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsumori, A., Ono, K., Nishio, R., Nose, Y. & Sasayama, S. Amiodarone inhibits production of tumor necrosis factor-α by human mononuclear cells: a possible mechanism for its effect in heart failure. Circulation 96, 1386–1389 (1997).

    CAS  PubMed  Google Scholar 

  65. Dias, D. S. et al. Opposite effects of iv amiodarone on cardiovascular vagal and sympathetic efferent activities in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R543–R548 (2002).

    Google Scholar 

  66. Arai, I., Hirose, H., Muramatsu, M., Okuyama, S. & Aihara, H. Possible involvement of non-steroidal anti-inflammatory drugs in vagal-mediated gastric acid secretion in rats. Jpn. J. Pharmacol. 37, 91–99 (1985).

    CAS  PubMed  Google Scholar 

  67. Ben Menachem, E. Vagus nerve stimulation, side effects, and long-term safety. J. Clin. Neurophysiol. 18, 415–418 (2001).

    CAS  PubMed  Google Scholar 

  68. Schachter, S. C. Vagus nerve stimulation: where are we? Curr. Opin. Neurol. 15, 201–206 (2002).

    PubMed  Google Scholar 

  69. Pullan, R. D. et al. Transdermal nicotine for active ulcerative colitis. N. Engl. J. Med. 330, 811–815 (1994).

    CAS  PubMed  Google Scholar 

  70. Mabley, J. G., Pacher, P., Southan, G. J., Salzman, A. L. & Szabo, C. Nicotine reduces the incidence of type I diabetes in mice. J. Pharmacol. Exp. Ther. 300, 876–881 (2002).

    CAS  PubMed  Google Scholar 

  71. Metal'nikov, S. a. V. C. Role des reflexes conditionnels dans l'immunite. Ann. Inst. Pasteur 40, 893–900 (1926).

    Google Scholar 

  72. Madden, K. S. & Felten, D. L. Experimental basis for neural-immune interactions. Physiol Rev. 75, 77–106 (1995).

    CAS  PubMed  Google Scholar 

  73. Ader R. & Cohen, N. in Psychoneuroimmunology (eds Ader R., Felten, D. L. & Cohen, N) 3–34 (Academic, San Diego, 2001).

    Google Scholar 

  74. Exton, M. S. et al. Pavlovian conditioning of immune function: animal investigation and the challenge of human application. Behav. Brain Res. 110, 129–141 (2000).

    CAS  PubMed  Google Scholar 

  75. Black, S. Inhibition of immediate-type hypersensitivity response by direct suggestion under hypnosis. Br. Med. J. 1, 925–929 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zachariae, R. in Psychoneuroimmunology (eds Ader R., Felten, D. L. & Cohen, N.) 133–160 (Academic, San Diego, 2001).

    Google Scholar 

  77. Noguchi, E. & Hayashi, H. Increases in gastric acidity in response to electroacupuncture stimulation of the hindlimb of anesthetized rats. Jpn. J. Physiol 46, 53–58 (1996).

    CAS  PubMed  Google Scholar 

  78. Lux, G. et al. Acupuncture inhibits vagal gastric acid secretion stimulated by sham feeding in healthy subjects. Gut 35, 1026–1029 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Toussirot, E., Serratrice, G. & Valentin, P. Autonomic nervous system involvement in rheumatoid arthritis. 50 cases. J. Rheumatol. 20, 1508–1514 (1993).

    CAS  PubMed  Google Scholar 

  80. Tan, J., Akin, S., Beyazova, M., Sepici, V. & Tan, E. Sympathetic skin response and R-R interval variation in rheumatoid arthritis. Two simple tests for the assessment of autonomic function. Am. J. Phys. Med. Rehabil. 72, 196–203 (1993).

    CAS  PubMed  Google Scholar 

  81. Edmonds, M. E., Jones, T. C., Saunders, W. A. & Sturrock, R. D. Autonomic neuropathy in rheumatoid arthritis. Br. Med. J. 2, 173–175 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported in part by grants from the National Institutes of Health (National Institute of General Medical Sciences) and the Defense Advanced Research Projects Agency (DARPA). The author is grateful for the thoughtful suggestions from C. Czura, M. Fink, S. Friedman, C. Nathan and B. Sherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Tracey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tracey, K. The inflammatory reflex. Nature 420, 853–859 (2002). https://doi.org/10.1038/nature01321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01321

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing