Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Navigating the signalling network in mouse cardiac myocytes

Abstract

Cardiac myocytes have a complex network of signals that regulates their essential role in the rhythmic pumping of the heart. This network is an appealing model system in which to study the basic principles underlying cellular signalling mechanisms. Progress in this effort has come through the establishment of standardized myocyte isolation and culture procedures and characterization of important signalling responses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term culture of cardiac myocytes.

References

  1. Bers, D. M. Excitation-Contraction Coupling and Cardiac Contractile Force (Kluwer Academic Publishers, Dordrecht, 2001).

    Book  Google Scholar 

  2. Koch, W. J., Lefkowitz, R. J. & Rockman, H. A. Functional consequences of altering myocardial adrenergic receptor signaling. Annu. Rev. Physiol. 62, 237–260 (2000).

    Article  CAS  Google Scholar 

  3. Adams, J. W. & Brown, J. H. G-proteins in growth and apoptosis: lessons from the heart. Oncogene 20, 1626–1634 (2001).

    Article  CAS  Google Scholar 

  4. Ross, R. S. & Borg, T. K. Integrins and the myocardium. Circ. Res. 88, 1112–1119 (2001).

    Article  CAS  Google Scholar 

  5. Steinberg, S. F. & Brunton, L. L. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu. Rev. Pharmacol. Toxicol. 41, 751–773 (2001).

    Article  CAS  Google Scholar 

  6. Xiao, R. P. β-Adrenergic signaling in the heart: dual coupling of the β2-adrenergic receptor to Gs and Gi proteins. Science's STKEhttp://stke.sciencemag.org/cgi/content/full/sigtrans;2001/104/re15〉 (2001).

  7. Cripps, R. M. & Olson, E. N. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev. Biol. 246, 14–28 (2002).

    Article  CAS  Google Scholar 

  8. Hagemann, D. & Xiao, R. P. Dual site phospholamban phosphorylation and its physiological relevance in the heart. Trends Cardiovasc. Med. 12, 51–56 (2002).

    Article  CAS  Google Scholar 

  9. Rockman, H. A., Koch, W. J. & Lefkowitz, R. J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    Article  ADS  CAS  Google Scholar 

  10. Colan, S. D. Mechanics of left ventricular systolic and diastolic function in physiologic hypertrophy of the athlete's heart. Cardiol. Clin. 15, 355–372 (1997).

    Article  CAS  Google Scholar 

  11. Olson, E. N. & Williams, R. S. Calcineurin signaling and muscle remodeling. Cell 101, 689–692 (2000).

    Article  CAS  Google Scholar 

  12. Hunter, J. J. & Chien, K. R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341, 1276–1283 (1999).

    Article  CAS  Google Scholar 

  13. Small, K. M., Wagoner, L. E., Levin, A. M., Kardia, S. L. & Liggett, S. B. Synergistic polymorphisms of β1- and α2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 347, 1135–1142 (2002).

    Article  CAS  Google Scholar 

  14. Robison, G. A., Butcher, R. W., Oye, I., Morgan, H. E. & Sutherland, E. W. The effect of epinephrine on adenosine 3′,5′-phosphate levels in the isolated perfused rat heart. Mol. Pharmacol. 1, 168–177 (1965).

    CAS  PubMed  Google Scholar 

  15. Kruppenbacher, J. P., May, T., Eggers, H. J. & Piper, H. M. Cardiomyocytes of adult mice in long-term culture. Naturwissenschaften 80, 132–134 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Benndorf, K., Boldt, W. & Nilius, B. Sodium current in single myocardial mouse cells. Pflugers Arch. 404, 190–196 (1985).

    Article  CAS  Google Scholar 

  17. Wolska, B. M. & Solaro, R. J. Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. Am. J. Physiol. 271, H1250–H1255 (1996).

    Article  CAS  Google Scholar 

  18. Hilal-Dandan, R., Kanter, J. R. & Brunton, L. L. Characterization of G-protein signaling in ventricular myocytes from the adult mouse heart: differences from the rat. J. Mol. Cell. Cardiol. 32, 1211–1221 (2000).

    Article  CAS  Google Scholar 

  19. Zhou, Y. Y. et al. Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am. J. Physiol. Heart Circ. Physiol. 279, H429–H436 (2000).

    Article  CAS  Google Scholar 

  20. Simmerman, H. K. & Jones, L. R. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol. Rev. 78, 921–947 (1998).

    Article  CAS  Google Scholar 

  21. Condorelli, G. et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl Acad. Sci. USA 99, 12333–12338 (2002).

    Article  ADS  CAS  Google Scholar 

  22. Crackower, M. A. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110, 737–749 (2002).

    Article  CAS  Google Scholar 

  23. Thum, T. & Borlak, J. Butanedione monoxime increases the viability and yield of adult cardiomyocytes in primary cultures. Cardiovasc. Toxicol. 1, 61–72 (2001).

    Article  CAS  Google Scholar 

  24. Sellin, L. C. & McArdle, J. J. Multiple effects of 2,3-butanedione monoxime. Pharmacol. Toxicol. 74, 305–313 (1994).

    Article  CAS  Google Scholar 

  25. Kao, H. Y. et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem. 276, 47496–47507 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto R. Sambrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambrano, G., Fraser, I., Han, H. et al. Navigating the signalling network in mouse cardiac myocytes. Nature 420, 712–714 (2002). https://doi.org/10.1038/nature01306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing