Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity


The PAR-4 and PAR-1 kinases are necessary for the formation of the anterior–posterior (A–P) axis in Caenorhabditis elegans1,2,3. PAR-1 is also required for A–P axis determination in Drosophila4,5. Here we show that the Drosophila par-4 homologue, lkb1, is required for the early A–P polarity of the oocyte, and for the repolarization of the oocyte cytoskeleton that defines the embryonic A–P axis. LKB1 is phosphorylated by PAR-1 in vitro, and overexpression of LKB1 partially rescues the par-1 phenotype. These two kinases therefore function in a conserved pathway for axis formation in flies and worms. lkb1 mutant clones also disrupt apical–basal epithelial polarity, suggesting a general role in cell polarization. The human homologue, LKB1, is mutated in Peutz–Jeghers syndrome6,7 and is regulated by prenylation and by phosphorylation by protein kinase A8,9. We show that protein kinase A phosphorylates Drosophila LKB1 on a conserved site that is important for its activity. Thus, Drosophila and human LKB1 may be functional homologues, suggesting that loss of cell polarity may contribute to tumour formation in individuals with Peutz–Jeghers syndrome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: lkb1 mutants affect oocyte polarity.
Figure 2: Conservation and localization of LKB1.
Figure 3: Analysis of LKB1 regulation.
Figure 4: lkb1 is required for epithelial polarity.


  1. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988)

    Article  CAS  PubMed  Google Scholar 

  2. Watts, J. L., Morton, D. G., Bestman, J. & Kemphues, K. J. The C. elegans par-4 gene encodes a putative serine–threonine kinase required for establishing embryonic asymmetry. Development 127, 1467–1475 (2000)

    CAS  PubMed  Google Scholar 

  3. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995)

    Article  CAS  PubMed  Google Scholar 

  4. Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Tomancak, P. et al. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nature Cell Biol. 2, 458–460 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391, 184–187 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Jenne, D. E. et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nature Genet. 18, 38–43 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. Collins, S. P., Reoma, J. L., Gamm, D. M. & Uhler, M. D. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem. J. 345, 673–680 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sapkota, G. P. et al. Phosphorylation of the protein kinase mutated in Peutz–Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent protein kinase, but not its farnesylation at Cys433, is essential for LKB1 to suppress cell growth. J. Biol. Chem. 276, 19469–19482 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. van Eeden, F. & St Johnston, D. The polarisation of the anterior–posterior and dorsal–ventral axes during Drosophila oogenesis. Curr. Opin. Genet. Dev. 9, 396–404 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. St Johnston, D., Beuchle, D. & Nüsslein-Volhard, C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991)

    Article  CAS  PubMed  Google Scholar 

  12. Clark, I., Giniger, E., Ruohola-Baker, H., Jan, L. Y. & Jan, Y. L. Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr. Biol. 4, 289–300 (1994)

    Article  CAS  PubMed  Google Scholar 

  13. Martin, S. G., Dobi, K. C. & St Johnston, D. A rapid method to map mutations in Drosophila. Genome Biol. 2, research0036.1–12 (2001)

    Article  Google Scholar 

  14. Benton, R., Palacios, I. M. & St Johnston, D. Drosophila 14–3–3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev. Cell 3, 659–671 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Spradling, A. The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) 1–70 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1993)

    Google Scholar 

  16. Huynh, J. R., Shulman, J. M., Benton, R. & St Johnston, D. PAR-1 is required for the maintenance of oocyte fate in Drosophila. Development 128, 1201–1209 (2001)

    CAS  PubMed  Google Scholar 

  17. Cox, D. N., Lu, B., Sun, T. Q., Williams, L. T. & Jan, Y. N. Drosophila par-1 is required for oocyte differentiation and microtubule organization. Curr. Biol. 11, 75–87 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. de Cuevas, M. & Spradling, A. C. Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125, 2781–2789 (1998)

    CAS  PubMed  Google Scholar 

  19. Rorth, P. Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Lane, M. E. & Kalderon, D. RNA localization along the anteroposterior axis of the Drosophila oocyte requires PKA-mediated signal transduction to direct normal microtubule organization. Genes Dev. 8, 2986–2995 (1994)

    Article  CAS  PubMed  Google Scholar 

  21. Hemminki, A. The molecular basis and clinical aspects of Peutz–Jeghers syndrome. Cell. Mol. Life Sci. 55, 735–750 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez-Cespedes, M. et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002)

    CAS  PubMed  Google Scholar 

  23. Yoo, L. I., Chung, D. C. & Yuan, J. LKB1—a master tumour suppressor of the small intestine and beyond. Nature Rev. Cancer 2, 529–535 (2002)

    Article  CAS  Google Scholar 

  24. Bardeesy, N. et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419, 162–167 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993)

    CAS  PubMed  Google Scholar 

  26. Chou, T. B. & Perrimon, N. The autosomal FLP–DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanson, B., White, P. & Vincent, J. P. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383, 627–630 (1996)

    Article  ADS  PubMed  Google Scholar 

  28. Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82, 67–76 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Sun, T. Q. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nature Cell Biol. 3, 628–636 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Theurkauf, W. Drosophila melanogaster: Practical Uses in Cell and Molecular Biology (eds Goldstein, L. & Fyrberg, E.) 489–506 (Academic, London, 1994)

    Google Scholar 

Download references


We thank M. Pal for fly injection; K. Litière for generating the kinesin–β-gal line; I. Palacios, B. Sanson, A. Wodarz and the Developmental Studies Hybridoma Bank for strains and antibodies; and J. Rouse, N. Lowe, J. Raff and R. Benton for advice and discussion. S.G.M. was supported by the Swiss National Science Foundation and D.StJ. by the Wellcome Trust.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel St Johnston.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, S., St Johnston, D. A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity. Nature 421, 379–384 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing