Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2

Abstract

The sudden, widespread glaciation of Antarctica and the associated shift towards colder temperatures at the Eocene/Oligocene boundary (34 million years ago) (refs 1–4) is one of the most fundamental reorganizations of global climate known in the geologic record. The glaciation of Antarctica has hitherto been thought to result from the tectonic opening of Southern Ocean gateways, which enabled the formation of the Antarctic Circumpolar Current and the subsequent thermal isolation of the Antarctic continent5. Here we simulate the glacial inception and early growth of the East Antarctic Ice Sheet using a general circulation model with coupled components for atmosphere, ocean, ice sheet and sediment, and which incorporates palaeogeography, greenhouse gas, changing orbital parameters, and varying ocean heat transport. In our model, declining Cenozoic CO2 first leads to the formation of small, highly dynamic ice caps on high Antarctic plateaux. At a later time, a CO2 threshold is crossed, initiating ice-sheet height/mass-balance feedbacks that cause the ice caps to expand rapidly with large orbital variations, eventually coalescing into a continental-scale East Antarctic Ice Sheet. According to our simulation the opening of Southern Ocean gateways plays a secondary role in this transition, relative to CO2 concentration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Early Cenozoic ice-free Antarctic topography in metres above sea level.
Figure 2: The transient climate-cryosphere response to a prescribed decline in CO2 from 4 × to 2 × preindustrial atmospheric level over a 10-Myr period.
Figure 3: Ice-surface elevations at instantaneous times during the transition from ‘Greenhouse’ to ‘Icehouse’ conditions in our nominal 10-Myr simulation (Fig. 2a, red curve).

References

  1. 1

    Zachos, J. C., Quinn, T. M. & Salamy, K. A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene–Oligocene climate transition. Paleoceanography 11, 251–266 (1996)

    ADS  Article  Google Scholar 

  2. 2

    Zachos, J., Pagani, M., Sloan, L. & Thomas, E. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Barrett, P. J. Antarctic paleoenvironment through Cenozoic times—a review. Terr. Antarct. 3, 103–119 (1996)

    Google Scholar 

  5. 5

    Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3859 (1977)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Lawver, L. A., Gahagan, L. M. & Coffin, M. F. in The Antarctic Paleoenvironment: A Perspective on Global Change (eds Kennett, J. P. & Warnke, D. A.) 7–30 (American Geophysical Union, Washington DC, 1992)

    Google Scholar 

  7. 7

    Hambrey, M. J., Larsen, B. & Ehrmann, W. U. in Ocean Drilling Program Scientific Results 119 (eds Barron, J. & Larsen, B.) 77–132 (College Station, Texas, 1991)

    Google Scholar 

  8. 8

    Wilson, G. S., Roberts, A. P., Verosub, K. L., Florindo, F. & Sagnotti, L. Magnetobiostratigraphic chronology of the Eocene–Oligocene transition in the CIROS-1 core, Victoria Land margin, Antarctica: Implications for Antarctic glacial history. Geol. Soc. Am. Bull. 110, 35–47 (1998)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Zachos, J. C., Breza, J. R. & Wise, S. W. Early Oligocene ice sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology 20, 569–573 (1992)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ehrmann, W. U. & Mackensen, A. Sedimentologic evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 85–112 (1992)

    Article  Google Scholar 

  11. 11

    Francis, J. E. Evidence from fossil plants for Antarctic Paleoclimates over the past 100 million years. Terr. Antarct. Rep. 3, 43–52 (1999)

    Google Scholar 

  12. 12

    Barrett, P. J., Elston, D. P., Harwood, D. M., McKelvey, B. C. & Webb, P.-N. Mid-Cenozoic record of glaciation and sea-level change on the margin of Victoria Land basin, Antarctica. Geology 15, 634–637 (1987)

    ADS  Article  Google Scholar 

  13. 13

    Naish, T. R. et al. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413, 719–723 (2001)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Exon, N., Kennett, J., Malone, M. & the Leg 189 Shipboard Scientific Party. The opening of the Tasmanian gateway drove global Cenozoic paleoclimatic and paleoceanographic changes: results of Leg 189. JOIDES J. 26, 11–17 (2000)

    Google Scholar 

  15. 15

    Toggweiler, J. R. & Bjornsson, H. Drake Passage and paleoclimate. J. Quat. Sci. 15, 319–328 (2000)

    Article  Google Scholar 

  16. 16

    Nong, G. T., Najjar, R. G., Seidov, D. & Peterson, W. Simulation of ocean temperature change due to the opening of Drake Passage. Geophys. Res. Lett. 27, 2689–2692 (2000)

    ADS  Article  Google Scholar 

  17. 17

    Lawver, L. A. & Gahagan, L. M. in Tectonic Boundary Conditions for Climate Reconstructions (eds Crowley, T. J. & Burke, K. C.) 212–223 (Oxford Univ. Press, New York, 1998)

    Google Scholar 

  18. 18

    Barker, P. F. & Burrell, J. The opening of Drake Passage. Mar. Geol. 25, 15–34 (1977)

    ADS  Article  Google Scholar 

  19. 19

    Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide over the past 60 million years. Nature 406, 695–699 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Pagani, M., Arthur, M. A. & Freeman, K. H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273–292 (1999)

    ADS  Article  Google Scholar 

  21. 21

    Birchfield, G. E., Weertman, J. & Lunde, A. T. A model study of the role of high latitude topography in the climatic response to orbital insolation anomalies. J. Atmos. Sci. 39, 71–87 (1982)

    ADS  Article  Google Scholar 

  22. 22

    Abe-Ouchi, A. & Blatter, H. On the initiation of ice sheets. Ann. Glaciaol. 18, 203–207 (1993)

    ADS  Article  Google Scholar 

  23. 23

    Maqueda, M., Willmott, A. J., Bamber, J. L. & Darby, M. S. An investigation of the small ice cap instability in the Southern Hemisphere with a coupled atmosphere–sea ice–ocean–terrestrial ice model. Clim. Dyn. 14, 329–352 (1998)

    Article  Google Scholar 

  24. 24

    Huybrechts, P. Glaciological modelling of the late Cenozoic East Antarctic ice sheet: stability or dynamism? Geograf. Annal. 75, 221–238 (1993)

    Article  Google Scholar 

  25. 25

    Thompson, S. L. & Pollard, D. Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS Version-2 Global Climate Model. J. Clim. 10, 871–900 (1997)

    ADS  Article  Google Scholar 

  26. 26

    Kamb, B. in The West Antarctic Ice Sheet: Behaviour and Environment (eds Alley, R. A. & Bindschadler, R. A.) 157–199 (American Geophysical Union, Washington DC, 2001)

    Google Scholar 

  27. 27

    Clark, P. U. & Pollard, D. Origin of the mid-Pleistocene transition by ice-sheet erosion of regolith. Paleoceanography 13, 1–9 (1998)

    ADS  Article  Google Scholar 

  28. 28

    Brotchie, J. F. & Sylvester, R. On crustal flexure. J. Geophys. Res. 74, 5240–5252 (1969)

    ADS  Article  Google Scholar 

  29. 29

    Ritz, C., Fabre, A. & Letreguilly, A. Sensitivity of a Greenland ice-sheet model to ice flow and ablation parameters: consequences for the evolution through the last climate cycle. Clim. Dyn. 13, 11–24 (1997)

    Article  Google Scholar 

  30. 30

    Bamber, J. A. & Bindschadler, R. A. An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Ann. Glaciol 25, 439–444 (1997)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert M. DeConto.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DeConto, R., Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003). https://doi.org/10.1038/nature01290

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing