Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission

Abstract

Conventional solid-core optical fibres require highly transparent materials. Such materials have been difficult to identify owing to the fundamental limitations associated with the propagation of light through solids, such as absorption, scattering and nonlinear effects. Hollow optical fibres offer the potential to minimize the dependence of light transmission on fibre material transparency1,2,3. Here we report on the design and drawing of a hollow optical fibre lined with an interior omnidirectional dielectric mirror4. Confinement of light in the hollow core is provided by the large photonic bandgaps5,6,7 established by the multiple alternating submicrometre-thick layers of a high-refractive-index glass and a low-refractive-index polymer. The fundamental and high-order transmission windows are determined by the layer dimensions and can be scaled from 0.75 to 10.6 µm in wavelength. Tens of metres of hollow photonic bandgap fibres for transmission of carbon dioxide laser light at 10.6 µm wavelength were drawn. The transmission losses are found to be less than 1.0 dB m-1, orders of magnitude lower than those of the intrinsic fibre material, thus demonstrating that low attenuation can be achieved through structural design rather than high-transparency material selection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-sectional SEM micrographs at various magnifications of hollow cylindrical multilayer fibre mounted in epoxy.
Figure 2: Photonic band structure due to the dielectric mirror, and the resulting transmission spectra for the hollow fibre.
Figure 3: Visible to near-infrared transmission spectrum and charge-coupled device (CCD) image (inset) of light emerging from core of hollow fibre that has a fundamental bandgap at 3.1 µm.
Figure 4: Transmission spectra for straight (blue) and ‘knotted’ (red) hollow fibre having a fundamental bandgap at 3.55 µm.
Figure 5: Typical transmission spectrum of hollow fibres designed to transmit CO2 laser light.

Similar content being viewed by others

References

  1. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)

    Article  CAS  Google Scholar 

  2. Allan, D. C. et al. Photonic Crystals and Light Localization in the 21st Century (ed. Soukoulis, C. M.) 305–320 (Kluwer, Boston, 2001)

    Book  Google Scholar 

  3. Eggleton, B. J., Kerbage, C., Westbrook, P. S., Windeler, R. S. & Hale, A. Microstructured optical fiber devices. Opt. Express 9, 698–713 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  CAS  Google Scholar 

  6. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  CAS  Google Scholar 

  7. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, New Jersey, 1995)

    MATH  Google Scholar 

  8. Maurer, R. D. & Schultz, P. C. US Patent 3,659,915 (1972).

  9. Keck, D. B., Maurer, R. D. & Schultz, P. C. On the ultimate lower limit of attenuation in glass optical waveguides. Appl. Phys. Lett. 22, 307–309 (1973)

    Article  ADS  CAS  Google Scholar 

  10. Hilton, A. R. Optical properties of chalcogenide glasses. J. Non-Cryst. Solids 2, 28–39 (1970)

    Article  ADS  CAS  Google Scholar 

  11. Harrington, J. A. Handbook of Optics (ed. Bass, M.) 14.1–14.13 (McGraw-Hill, New York, 2001)

    Google Scholar 

  12. Harrington, J. A. A review of IR transmitting, hollow waveguides. Fiber Integr. Opt. 19, 211–227 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Mitra, P. P. & Stark, J. B. Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Renn, M. J. et al. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett. 75, 3253–3256 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Marcatilli, E. A. J. & Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43, 1783–1809 (1964)

    Article  Google Scholar 

  17. Miyagi, M. & Kawakami, S. Design theory of dielectric-coated circular metallic waveguides for infrared transmission. J. Lightwave Technol. 2, 116–126 (1984)

    Article  ADS  Google Scholar 

  18. Matsuura, Y., Kasahara, R., Katagiri, T. & Miyagi, M. Hollow infrared fibers fabricated by glass-drawing technique. Opt. Express 10, 488–492 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Hongo, A., Morosawa, K., Matsumoto, K., Shiota, T. & Hashimoto, T. Transmission of kilowatt-class CO2-laser light through dielectric-coated metallic hollow wave-guides for material processing. Appl. Opt. 31, 5114–5120 (1992)

    Article  ADS  CAS  Google Scholar 

  20. Bornstein, A. & Croitoru, N. Chalcogenide hollow fibers. J. Non-cryst. Solids 77–78, 1277–1280 (1985)

    Article  ADS  Google Scholar 

  21. Fitt, A. D., Furusawa, K., Monro, T. M. & Please, C. P. Modeling the fabrication of hollow fibers: Capillary drawing. J. Lightwave Technol. 19, 1924–1931 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Broeng, J., Barkou, S. E., Søndergaard, T. & Bjarklev, A. Analysis of air-guiding photonic bandgap fibers. Opt. Lett. 25, 96–98 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Yeh, P., Yariv, A. & Marom, E. Theory of Bragg fiber. J. Opt. Soc. Am. 68, 1196–1201 (1978)

    Article  ADS  Google Scholar 

  24. Ouyang, G., Xu, Y. & Yariv, A. Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics. Opt. Express 9, 733–747 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Ibanescu, M., Fink, Y., Fan, S., Thomas, E. L. & Joannopoulos, J. D. An all-dielectric coaxial waveguide. Science 289, 415–419 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Johnson, S. G. et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9, 748–779 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Fink, Y. et al. Guiding optical light in air using an all-dielectric structure. J. Lightwave Technol. 17, 2039–2041 (1999)

    Article  ADS  Google Scholar 

  28. Hart, S. D. et al. External reflection from omnidirectional dielectric mirror fibers. Science 296, 510–513 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Sanghera, J. S. & Aggarwal, I. D. Active and passive chalcogenide glass optical fibers for IR applications: a review. J. Non-cryst. Solids 257, 6–16 (1999)

    Article  ADS  Google Scholar 

  30. Bormashenko, E., Pogreb, R., Pogreb, Z. & Sutovski, S. Development of new near-infrared filters based on the “sandwich” polymer-chalcogenide glass-polymer composites. Opt. Eng. 40, 661–662 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. H. Prideaux for teaching us the ways and means of optical fibre drawing; G. R. Maskaly, H. Burch, K. R. Maskaly, E. P. Chan, O. Shapira, M. Bayindir, C. H. Sarantos and C. Guaqueta for their contributions;. L. H. Galindo, T. McClure and M. Frongillo for experimental aid; W. A. King, J. A. Harrington, A. R. Hilton, E. L. Thomas, U. Kolodny and R. Stata for discussions and support; L. Laughman, L. Newman, A. DeMaria and the team at Coherent-DEOS for assistance; and W. H. Smith, M. Young and the MIT-RLE for administrative support. This work was supported in part by DARPA-QUIST/ARO, the NSF, the US DOE, and an NSF graduate research fellowship (S.D.H.). This work was also supported by the Materials Research Science and Engineering Center (MRSEC) programme of the NSF, and made use of MRSEC shared facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoel Fink.

Ethics declarations

Competing interests

The authors decline to provide information about competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temelkuran, B., Hart, S., Benoit, G. et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002). https://doi.org/10.1038/nature01275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01275

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing