Detection of polarization in the cosmic microwave background using DASI

Article metrics

Abstract

The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Polarization maps formed from high signal/noise eigenmodes.
Figure 4: Results from several likelihood analyses.
Figure 2: Parameter window functions, which indicate the angular scales over which the parameters in our analyses constrain the power spectra.
Figure 3: Results from the two-parameter shaped bandpower E/B polarization analysis.
Figure 5: Results of shaped bandpower amplitude/spectral-index analyses.
Figure 6: Results from the three-parameter shaped bandpower T/E/TE joint analysis.

References

  1. 1

    Penzias, A. A. & Wilson, R. W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965)

  2. 2

    Mather, J. C. et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994)

  3. 3

    Fixsen, D. J. et al. The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576–587 (1996)

  4. 4

    Smoot, G. F. et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1–L5 (1992)

  5. 5

    Miller, A. D. et al. A measurement of the angular power spectrum of the cosmic microwave background form l = 100 to 400. Astrophys. J. 524, L1–L4 (1999)

  6. 6

    Halverson, N. W. et al. Degree angular scale interferometer first results: A measurement of the cosmic microwave background angular power spectrum. Astrophys. J. 568, 38–45 (2002)

  7. 7

    Netterfield, C. B. et al. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 571, 604–614 (2002)

  8. 8

    Lee, A. T. et al. A high spatial resolution analysis of the MAXIMA-1 cosmic microwave background anisotropy data. Astrophys. J. 561, L1–L5 (2001)

  9. 9

    Pearson, T. J. et al. The anisotropy of the microwave background to l = 3500: Mosaic observations with the cosmic background imager. Astrophys. J. (submitted); preprint astro-ph/0205388 at 〈http://xxx.lanl.gov〉 (2002)

  10. 10

    Scott, P. F. et al. First results from the Very Small Array - III. The CMB power spectrum. Mon. Not. R. Astron. Soc. (submitted); preprint astro-ph/0205380 at 〈http://xxx.lanl.gov〉 (2002)

  11. 11

    Hu, W. & Dodelson, S. Cosmic microwave background anisotropies. Annu. Rev. Astron. Astrophys. 40, 171–216 (2002)

  12. 12

    Kaiser, N. Small-angle anisotropy of the microwave background radiation in the adiabatic theory. Mon. Not. R. Astron. Soc. 202, 1169–1180 (1983)

  13. 13

    Bond, J. R. & Efstathiou, G. Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. Astrophys. J. 285, L45–L48 (1984)

  14. 14

    Polnarev, A. G. Polarization and anisotropy induced in the microwave background by cosmological gravitational waves. Sov. Astron. 29, 607–613 (1985)

  15. 15

    Kamionkowski, M., Kosowsky, A. & Stebbins, A. Statistics of cosmic microwave background polarization. Phys. Rev. D. 55, 7368–7388 (1997)

  16. 16

    Zaldarriaga, M. & Seljak, U. All-sky analysis of polarization in the microwave background. Phys. Rev. D. 55, 1830–1840 (1997)

  17. 17

    Hu, W. & White, M. A CMB polarization primer. New Astron. 2, 323–344 (1997)

  18. 18

    Kosowsky, A. Introduction to microwave background polarization. New Astron. Rev. 43, 157–168 (1999)

  19. 19

    Hu, W., Spergel, D. N. & White, M. Distinguishing causal seeds from inflation. Phys. Rev. D 55, 3288–3302 (1997)

  20. 20

    Kinney, W. H. How to fool cosmic microwave background parameter estimation. Phys. Rev. D 63, 43001 (2001)

  21. 21

    Bucher, M., Moodley, K. & Turok, N. Constraining isocurvature perturbations with cosmic microwave background polarization. Phys. Rev. Lett. 87, 191301 (2001)

  22. 22

    Rees, M. J. Polarization and spectrum of the primeval radiation in an anisotropic universe. Astrophys. J. 153, L1–L5 (1968)

  23. 23

    Zaldarriaga, M. & Harari, D. D. Analytic approach to the polarization of the cosmic microwave background in flat and open universes. Phys. Rev. D 52, 3276–3287 (1995)

  24. 24

    Coulson, D., Crittenden, R. G. & Turok, N. G. Polarization and anisotropy of the microwave sky. Phys. Rev. Lett. 73, 2390–2393 (1994)

  25. 25

    Crittenden, R., Davis, R. L. & Steinhardt, P. J. Polarization of the microwave background due to primordial gravitational waves. Astrophys. J. 417, L13–L16 (1993)

  26. 26

    Seljak, U. Measuring polarization in the cosmic microwave background. Astrophys. J. 482, 6–16 (1997)

  27. 27

    Kamionkowski, M., Kosowsky, A. & Stebbins, A. A probe of primordial gravity waves and vorticity. Phys. Rev. Lett. 78, 2058–2061 (1997)

  28. 28

    Seljak, U. & Zaldarriaga, M. Signature of gravity waves in the polarization of the microwave background. Phys. Rev. Lett. 78, 2054–2057 (1997)

  29. 29

    Lyth, D. H. What would we learn by detecting a gravitational wave signal in the Cosmic Microwave Background anisotropy? Phys. Rev. Lett. 78, 1861–1863 (1997)

  30. 30

    Zaldarriaga, M. & Seljak, U. Gravitational lensing effect on cosmic microwave background polarization. Phys. Rev. D 58, 23003 (1998)

  31. 31

    Hu, W. & Okamoto, T. Mass reconstruction with cosmic microwave background polarization. Astrophys. J. 574, 566–574 (2002)

  32. 32

    Knox, L. & Song, Y. A limit on the detectability of the energy scale of inflation. Phys. Rev. Lett. 89, 011303 (2002)

  33. 33

    Kesden, M., Cooray, A. & Kamionkowski, M. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization. Phys. Rev. Lett. 89, 011304 (2002)

  34. 34

    Kamionkowski, M. & Kosowsky, A. The cosmic microwave background and particle physics. Annu. Rev. Nucl. Part. Sci. 49, 77–123 (1999)

  35. 35

    Staggs, S. T., Gunderson, J. O. & Church, S. E. ASP Conf. Ser. 181, Microwave Foregrounds (eds de Oliveira-Costa, A. & Tegmark, M.) 299–309 (Astronomical Society of the Pacific, San Francisco, 1999)

  36. 36

    Caderni, N., Fabbri, R., Melchiorri, B., Melchiorri, F. & Natale, V. Polarization of the microwave background radiation. II. An infrared survey of the sky. Phys. Rev. D 17, 1908–1918 (1978)

  37. 37

    Nanos, G. P. Polarization of the blackbody radiation at 3.2 centimeters. Astrophys. J. 232, 341–347 (1979)

  38. 38

    Lubin, P. M. & Smoot, G. F. Search for linear polarization of the cosmic background radiation. Phys. Rev. Lett. 42, 129–132 (1979)

  39. 39

    Lubin, P. M. & Smoot, G. F. Polarization of the cosmic background radiation. Astrophys. J. 245, 1–17 (1981)

  40. 40

    Lubin, P., Melese, P. & Smoot, G. Linear and circular polarization of the cosmic background radiation. Astrophys. J. 273, L51–L54 (1983)

  41. 41

    Sironi, G. et al. A 33 GHZ polarimeter for observations of the cosmic microwave background. New Astron. 3, 1–13 (1997)

  42. 42

    Keating, B. G. et al. A limit on the large angular scale polarization of the cosmic microwave background. Astrophys. J. 560, L1–L4 (2001)

  43. 43

    Wollack, E. J., Jarosik, N. C., Netterfield, C. B., Page, L. A. & Wilkinson, D. A measurement of the anisotropy in the cosmic microwave background radiation at degree angular scales. Astrophys. J. 419, L49–L52 (1993)

  44. 44

    Hedman, M. M. et al. New limits on the polarized anisotropy of the cosmic microwave background at subdegree angular scales. Astrophys. J. 573, L73–L76 (2002)

  45. 45

    Cartwright, J. K. et al. Polarization observations with the cosmic background imager. in Moriond Workshop 37, The Cosmological Model (in the press).

  46. 46

    de Oliveira-Costa, A. et al. First attempt at measuring the CMB cross-polarization. Phys. Rev. D (submitted); preprint astro-ph/0204021 at 〈http://xxx.lanl.gov〉 (2002)

  47. 47

    Partridge, R. B., Richards, E. A., Fomalont, E. B., Kellermann, K. I. & Windhorst, R. A. Small-scale cosmic microwave background observations at 8.4 GHz. Astrophys. J. 483, 38–50 (1997)

  48. 48

    Subrahmanyan, R., Kesteven, M. J., Ekers, R. D., Sinclair, M. & Silk, J. An Australia telescope survey for CMB anisotropies. Mon. Not. R. Astron. Soc. 315, 808–822 (2000)

  49. 49

    Leitch, E. M. et al. Experiment design and first season observations with the degree angular scale interferometer. Astrophys. J. 568, 28–37 (2002)

  50. 50

    Pryke, C. et al. Cosmological parameter extraction from the first season of observations with the degree angular scale interferometer. Astrophys. J. 568, 46–51 (2002)

  51. 51

    Leitch, E. M. et al. Measurement of polarization with the Degree Angular Scale Interferometer. Nature 420, 763–771 (2002)

  52. 52

    Haslam, C. G. T. et al. A 408 MHz all-sky continuum survey. I—Observations at southern declinations and for the north polar region. Astron. Astrophys. 100, 209–219 (1981)

  53. 53

    Bond, J. R., Jaffe, A. H. & Knox, L. Estimating the power spectrum of the cosmic microwave background. Phys. Rev. D 57, 2117–2137 (1998)

  54. 54

    Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437–444 (1996)

  55. 55

    White, M., Carlstrom, J. E., Dragovan, M. & Holzapfel, W. H. Interferometric observation of cosmic microwave background anisotropies. Astrophys. J. 514, 12–24 (1999)

  56. 56

    Hedman, M. M., Barkats, D., Gundersen, J. O., Staggs, S. T. & Winstein, B. A limit on the polarized anisotropy of the cosmic microwave background at subdegree angular scales. Astrophys. J. 548, L111–L114 (2001)

  57. 57

    Knox, L. Cosmic microwave background anisotropy window functions revisited. Phys. Rev. D 60, 103516 (1999)

  58. 58

    Halverson, N. W. A Measurement of the Cosmic Microwave Background Angular Power Spectrum with DASI. PhD thesis, Caltech (2002)

  59. 59

    Tegmark, M. & de Oliveira-Costa, A. How to measure CMB polarization power spectra without losing information. Phys. Rev. D 64, 063001 (2001)

  60. 60

    Christensen, N., Meyer, R., Knox, L. & Luey, B. Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements. Class. Quant. Gravity 18, 2677–2688 (2001)

  61. 61

    Wang, X., Tegmark, M. & Zaldarriaga, M. Is cosmology consistent? Phys. Rev. D 65, 123001 (2002)

  62. 62

    Wright, A. E., Griffith, M. R., Burke, B. F. & Ekers, R. D. The Parkes-MIT-NRAO (PMN) surveys. 2: Source catalog for the southern survey (- 87.5° < δ < -37°). Astrophys. J. Suppl. 91, 111–308 (1994)

  63. 63

    Mason, B. S., Pearson, T. J., Readhead, A. C. S., Shepherd, M. C. & Sievers, J. L. The anisotropy of the microwave background to 1 = 3500: Deep field observations with the cosmic background imager. Astrophys. J. (submitted); preprint astro-ph/0205384 at 〈http://xxx.lanl.gov〉 (2002)

  64. 64

    Zukowski, E. L. H., Kronberg, P. P., Forkert, T. & Wielebinski, R. Linear polarization measurements of extragalactic radio sources at λ6.3 cm. Astron. Astrophys. Suppl. 135, 571–577 (1999)

  65. 65

    Simard-Normandin, M., Kronberg, P. P. & Neidhoefer, J. Linear polarization observations of extragalactic radio sources at 2 cm and at 17-19 cm. Astron. Astrophys. Suppl. 43, 19–22 (1981)

  66. 66

    Simard-Normandin, M., Kronberg, P. P. & Button, S. The Faraday rotation measures of extragalactic radio sources. Astrophys. J. Suppl. 45, 97–111 (1981)

  67. 67

    Hildebrand, R. H. et al. A primer on far-infrared polarimetry. Publ. Astron. Soc. Pacif. 112, 1215–1235 (2000)

  68. 68

    Lazarian, A. & Prunet, S. AIP Conf. Proc. 609, Astrophysical Polarized Backgrounds (eds Cecchini, S., Cortiglioni, S., Sault, R. & Sbarra, C.) 32–43 (AIP, Melville, New York, 2002)

  69. 69

    Tegmark, M., Eisenstein, D. J., Hu, W. & de Oliveria-Costa, A. Foregrounds and forecasts for the cosmic microwave background. Astrophys. J. 530, 133–165 (2000)

  70. 70

    Giardino, G. et al. Towards a model of full-sky Galactic synchrotron intensity and linear polarisation: A re-analysis of the Parkes data. Astron. Astrophys. 387, 82–97 (2002)

  71. 71

    Gaensler, B. M. et al. Radio polarization from the inner galaxy at arcminute resolution. Astrophys. J. 549, 959–978 (2001)

  72. 72

    Gray, A. D. et al. Radio polarimetric imaging of the interstellar medium: Magnetic field and diffuse ionized gas structure near the W3/W4/W5/HB 3 complex. Astrophys. J. 514, 221–231 (1999)

  73. 73

    Platania, P. et al. A determination of the spectral index of galactic synchrotron emission in the 1–10 GHz range. Astrophys. J. 505, 473–483 (1998)

  74. 74

    Banday, A. J. & Wolfendale, A. W. Fluctuations in the galactic synchrotron radiation—I. Implications for searches for fluctuations of cosmological origin. Mon. Not. R. Astron. Soc. 248, 705–714 (1991)

  75. 75

    Zaldarriaga, M. The nature of the E-B decomposition of CMB polarization. Phys. Rev. D (submitted); preprint astro-ph/0106174 at 〈http://xxx.lanl.gov〉 (2001)

Download references

Acknowledgements

We are grateful for the efforts of B. Reddall and E. Sandberg, who wintered over at the National Science Foundation (NSF) Amundsen–Scott South Pole research station to keep DASI running smoothly. We are indebted to M. Dragovan for his role in making DASI a reality, and to the Caltech CBI team led by T. Readhead, in particular, to S. Padin, J. Cartwright, M. Shepherd and J. Yamasaki for the development of key hardware and software. We are indebted to the Center for Astrophysical Research in Antarctica (CARA), in particular to the CARA polar operations staff. We are grateful for contributions from K. Coble, A. Day, G. Drag, J. Kooi, E. LaRue, M. Loh, R. Lowenstein, S. Meyer, N. Odalen, R. Pernic, D. Pernic and E. Pernic, R. Spotz and M. Whitehead. We thank Raytheon Polar Services and the US Antarctic Program for their support of the DASI project. We have benefitted from many interactions with the Center for Cosmological Physics members and visitors. In particular, we gratefully acknowledge many conversations with W. Hu on CMB polarization and suggestions from S. Meyer, L. Page, M. Turner and B. Winstein on the presentation of these results. We thank L. Knox and A. Kosowsky for bringing the Markov technique to our attention. We thank the observatory staff of the Australia Telescope Compact Array, in particular B. Sault and R. Subrahmanyan, for providing point source observations of the DASI fields. This research was initially supported by the NSF under a cooperative agreement with CARA, a NSF Science and Technology Center. It is currently supported by an NSF-OPP grant. J.E.C. gratefully acknowledges support from the James S. McDonnell Foundation and the David and Lucile Packard Foundation. J.E.C. and C.P. gratefully acknowledge support from the Center for Cosmological Physics.

Author information

Correspondence to J. M. Kovac.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.