Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bond-controlled configurational entropy reduction in chemical vitrification

Abstract

Glass formation is usually viewed in terms of physical vitrification: a liquid in a metastable state1 is cooled or compressed so as to avoid crystallization. However, glasses may also be formed by chemical vitrification, a process involving progressive polymerization of the constituent molecules via the formation of irreversible chemical bonds. The formation of most of the materials used in engineering plastics and the hardening of natural and synthetic resins are based on chemical vitrification. Despite the differences in the molecular processes involved in chemical and physical vitrification, surprising similarities2,3,4,5,6,7,8,9 are observed in the slowing down of the dynamics and in the thermodynamical properties of the resulting glasses. Explaining such similarities would improve general understanding of the glass transition and may disclose its universal nature. Here we report dielectric and photon-correlation measurements that reveal the origin of the similarity in the dynamical behaviour of physical and chemical glass formers. We find that the evolution of their configurational restrictions proceeds in a similar manner. In particular, we make a connection between the reduction in configurational entropy and the number of chemical bonds, a quantity that can be controlled in experiments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dependence of the structural relaxation time, τ, on the conversion of epoxy groups, α, for several isothermal step polymerizations of epoxy-amine systems, where reaction proceeds by polyaddition.

References

  1. Debenedetti, P. G. Metastable Liquids. Concepts and Principles (Princeton Univ. Press, Princeton, 1996)

    Google Scholar 

  2. Deng, Y. & Martin, C. Analysis of the cure-dependent dielectric relaxation behavior of an epoxy resin. J. Polym. Sci. B 32, 2115–2125 (1994)

    Article  CAS  Google Scholar 

  3. Cassettari, M., Salvetti, G., Tombari, E., Veronesi, S. & Johari, G. P. Dielectrics and thermodynamics of a macromolecule's growth. J. Non-Cryst. Solids 172–174, 554–561 (1994)

    Article  ADS  Google Scholar 

  4. Casalini, R., Corezzi, S., Fioretto, D., Livi, A. & Rolla, P. A. Unified dielectric description of the dynamics of polymeric systems undergoing either thermal or chemical vitrification. Chem. Phys. Lett. 258, 470–476 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Tombari, E., Ferrari, C., Salvetti, G. & Johari, G. P. Molecular dynamics during linear chain polymerization from real-time dielectric spectrometry and calorimetry. J. Phys. Condens. Matter 9, 7017–7037 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Johari, G. P., Ferrari, C., Tombari, E. & Salvetti, G. Temperature modulation effects on a material's properties: Thermodynamics and dielectric relaxation during polymerization. J. Chem. Phys. 110, 11592–11598 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Gallone, G., Capaccioli, S., Levita, G., Rolla, P. A. & Corezzi, S. Dielectric analysis of the linear polymerization of an epoxy resin. Polym. Int. 50, 545–551 (2001)

    Article  CAS  Google Scholar 

  8. Parthun, M. G. & Johari, G. P. Dielectric spectroscopy of a polymerizing liquid and the evolution of molecular dynamics with increase in the number of covalent bonds. J. Chem. Phys. 103, 440–450 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Johari, G. P., Ferrari, C., Salvetti, G. & Tombari, E. Physico-chemical aspects of dielectric and thermodynamic changes during high-temperature polymerization and their technical use. Phys. Chem. Chem. Phys. 1, 2997–3005 (1999)

    Article  CAS  Google Scholar 

  10. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965)

    Article  ADS  CAS  Google Scholar 

  11. Xia, X. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. USA 97, 2990–2994 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Richert, R. & Angell, C. A. Dynamics of glassforming liquids. V: On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016–9026 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Casalini, R., Capaccioli, S., Lucchesi, M., Rolla, P. A. & Corezzi, S. Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model. Phys. Rev. E 63, 031207 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Casalini, R. et al. Effect of pressure on the dynamics of glass formers. Phys. Rev. E 64, 041504 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Scala, A., Starr, F. W., La Nave, E., Sciortino, F. & Stanley, H. E. Configurational entropy and diffusivity of supercooled water. Nature 406, 166–169 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164–167 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Matsuoka, S., Quan, X., Bair, H. E. & Boyle, D. J. A model for the curing reaction of epoxy resins. Macromolecules 22, 4093–4098 (1989)

    Article  ADS  CAS  Google Scholar 

  18. Young, R. J. & Lovell, P. A. Introduction to Polymers (Chapman and Hall, New York, 1991)

    Book  Google Scholar 

  19. Macosko, C. W. & Miller, D. R. A new derivation of average molecular weights of nonlinear polymers. Macromolecules 9, 199–206 (1976)

    Article  ADS  CAS  Google Scholar 

  20. Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948)

    Article  CAS  Google Scholar 

  21. Vogel, H. Temperature dependence of viscosity of melts. Phys. Z. 22, 645–646 (1921)

    CAS  Google Scholar 

  22. Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991)

    Article  ADS  Google Scholar 

  23. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001)

    Article  ADS  CAS  Google Scholar 

  26. La Nave, E., Mossa, S. & Sciortino, F. Potential energy landscape equation of state. Phys. Rev. Lett. 88, 225701 (2002)

    Article  ADS  Google Scholar 

  27. Kumar, S. K. & Douglas, J. F. Gelation in physically associating polymer solutions. Phys. Rev. Lett. 87, 188301 (2001)

    Article  ADS  Google Scholar 

  28. Martinez, L.-M. & Angell, C. A. A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663–667 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Lun˘ák, S. & Dus̆ek, K. Curing of epoxy resins. II. Curing of bisphenol A diglycidyl ether with diamines. J. Polym. Sci. Polym. Symp. Edn 53, 45–55 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Gallone and S. Capaccioli for providing dielectric measurements on EPON828/EDA 1:1 and EPON828/BAM 1:1 systems, and L. Comez, P. Grigolini, S. Mossa, G. Ruocco, A. Scala and G. Socino for comments on the manuscript. We particularly thank F. Sciortino for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Corezzi.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corezzi, S., Fioretto, D. & Rolla, P. Bond-controlled configurational entropy reduction in chemical vitrification. Nature 420, 653–656 (2002). https://doi.org/10.1038/nature01261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01261

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing