Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational approaches to cellular rhythms

Abstract

Oscillations arise in genetic and metabolic networks as a result of various modes of cellular regulation. In view of the large number of variables involved and of the complexity of feedback processes that generate oscillations, mathematical models and numerical simulations are needed to fully grasp the molecular mechanisms and functions of biological rhythms. Models are also necessary to comprehend the transition from simple to complex oscillatory behaviour and to delineate the conditions under which they arise. Examples ranging from calcium oscillations to pulsatile intercellular communication and circadian rhythms illustrate how computational biology contributes to clarify the molecular and dynamical bases of cellular rhythms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sustained oscillations can occur in models based on positive or negative feedback.
Figure 2: Molecular models of increasing complexity considered for circadian oscillations.
Figure 3: Effect of molecular noise on circadian oscillations.

Similar content being viewed by others

References

  1. Fessard, A. Propriétés Rythmiques de la Matière Vivante (Hermann, Paris, 1936).

    Google Scholar 

  2. Winfree, A. T. The Geometry of Biological Time 2nd edn (Springer, New York, 2001).

    Book  MATH  Google Scholar 

  3. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms. The Molecular Bases of Periodic and Chaotic Behaviour (Cambridge Univ. Press, Cambridge, 1996).

    Book  MATH  Google Scholar 

  4. Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926).

    Article  ADS  MATH  Google Scholar 

  5. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane currents and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  6. Koch, C. & Segev, I. (eds) Methods in Neuronal Modeling. From Synapses to Networks 2nd edn (MIT Press, Cambridge, MA, 1998).

    Google Scholar 

  7. Keener, J. P. & Sneyd, J. Mathematical Physiology (Springer, New York, 1998).

    Book  MATH  Google Scholar 

  8. Noble, D. Modeling the heart—from genes to cells to the whole organ. Science 295, 1678–1682 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977).

    MATH  Google Scholar 

  10. Thomas, R. & d'Ari, R. Biological Feedback (CRC Press, Boca Raton, FL, 1990).

    MATH  Google Scholar 

  11. Ferrell, J. E. Jr Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Doedel, E. J. AUTO: A program for the automatic bifurcation analysis of autonomous systems. Cong. Numer. 30, 265–284 (1981). (Available at 〈http://ftp.cs.concordia.ca/pub/doedel/auto/〉.)

    MathSciNet  MATH  Google Scholar 

  13. Hess, B. & Boiteux, A. Oscillatory phenomena in biochemistry. Annu. Rev. Biochem. 40, 237–258 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. Goldbeter, A. & Caplan, S. R. Oscillatory enzymes. Annu. Rev. Biophys. Bioeng. 5, 449–476 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Berridge, M. J. Elementary and global aspects of calcium signalling. J. Physiol. (Lond.) 499, 291–306 (1997).

    Article  CAS  Google Scholar 

  16. Meyer, T. & Stryer, L. Molecular model for receptor-stimulated calcium spiking. Proc. Natl Acad. Sci. USA 85, 5051–5055 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldbeter, A., Dupont, G. & Berridge, M. J. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl Acad. Sci. USA 87, 1461–1465 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Young, G. W. & Keizer, J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl Acad. Sci. USA 89, 9895–9899 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dupont, G. & Goldbeter, A. Properties of intracellular Ca2+ waves generated by a model based on Ca2+-induced Ca2+ release. Biophys. J. 67, 2191–2204 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sneyd, J., Charles, A. C. & Sanderson, M. J. A model for the propagation of intercellular calcium waves. Am. J. Physiol. 266, C293–C302 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Dupont, G. et al. Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes. FASEB J. 14, 279–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Schuster, S., Marhl, M. & Höfer, T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur. J. Biochem. 269, 1333–1355 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Swillens, S., Dupont, G., Combettes, L. & Champeil, P. From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication. Proc. Natl Acad. Sci. USA 96, 13750–13755 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spitzer, N. C., Lautermilch, N. J., Smith, R. D. & Gomez, T. M. Coding of neuronal differentiation by calcium transients. BioEssays 22, 811–817 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. De Koninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Gorbunova, Y. V. & Spitzer, N. C. Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes. Nature 418, 93–96 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Dormann, D., Kim, J. Y., Devreotes, P. N. & Weijer, C. J. cAMP receptor affinity controls wave dynamics, geometry and morphogenesis in Dictyostelium. J. Cell Sci. 114, 2513–2523 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Martiel, J. L. & Goldbeter, A. A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys. J. 52, 807–828 (1987).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  29. Tang, Y. & Othmer, H. G. Excitation, oscillations and wave propagation in a G-protein-based model of signal transduction in Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. B 349, 179–195 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Palsson, E. & Cox, E. C. Origin and evolution of circular waves and spirals in Dictyostelium discoideum territories. Proc. Natl Acad. Sci. USA 93, 1151–1155 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lauzeral, J., Halloy, J. & Goldbeter, A. Desynchronization of cells on the developmental path triggers the formation of spiral waves of cAMP during Dictyostelium aggregation. Proc. Natl Acad. Sci. USA 94, 9153–9158 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bretschneider, T., Siegert, F. & Weijer, C. J. Three-dimensional scroll waves of cAMP could direct cell movement and gene expression in Dictyostelium slugs. Proc. Natl Acad. Sci. USA 92, 4387–4391 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chadwick, D. J. & Goode, J. A. (eds) Mechanisms and Biological Significance of Pulsatile Hormone Secretion (Novartis Found. Symp. 227) (Wiley, Chichester, 2000).

    Book  Google Scholar 

  34. Knobil, E. Patterns of hormone signals and hormone action. New Engl. J. Med. 305, 1582–1583 (1981).

    Article  CAS  PubMed  Google Scholar 

  35. Belchetz, P. E., Plant, T. M., Nakai, Y., Keogh, E. J. & Knobil, E. Hypophysial responses to continuous and intermittent delivery of hypothalamic gonadotropin-releasing hormone. Science 202, 631–633 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hindmarsh, P. C., Stanhope, R., Preece, M. A. & Brook, C. G. D. Frequency of administration of growth hormone—an important factor in determining growth response to exogenous growth hormone. Horm. Res. 33 (Suppl. 4), 83–89 (1990).

    Article  PubMed  Google Scholar 

  37. Tornheim, K. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 46, 1375–1380 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Y. X. & Goldbeter, A. Frequency specificity in intercellular communication: the influence of patterns of periodic signalling on target cell responsiveness. Biophys. J. 55, 125–145 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldbeter, A., Dupont, G. & Halloy, J. The frequency encoding of pulsatility. Novartis Found. Symp. 227, 19–36 (2000).

    CAS  PubMed  Google Scholar 

  40. Wagner, C., Caplan, S. R. & Tannenbaum, G. S. Genesis of the ultradian rhythm of GH secretion: a new model unifying experimental observations in rats. Am. J. Physiol. 275, E1046–E1054 (1998).

    CAS  PubMed  Google Scholar 

  41. Maki, L. W. & Keizer, J. Mathematical analysis of a proposed mechanism for oscillatory insulin secretion in perifused HIT-15 cells. Bull. Math. Biol. 57, 569–591 (1995).

    Article  CAS  PubMed  MATH  Google Scholar 

  42. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Kronauer, R. E., Forger, D. B. & Jewett, M. E. Quantifying human circadian pacemaker response to brief, extended, and repeated light stimuli over the phototopic range. J. Biol. Rhythms 14, 500–515 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Gonze, D., Roussel, M. & Goldbeter, A. A model for the enhancement of fitness in cyanobacteria based on resonance of a circadian oscillator with the external light-dark cycle. J. Theor. Biol. 214, 577–597 (2002).

    Article  PubMed  Google Scholar 

  48. Goodwin, B. C. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965).

    Article  CAS  PubMed  Google Scholar 

  49. Ruoff, P., Vinsjevik, M., Monnerjahn, C. & Rensing, L. The Goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa. J. Theor. Biol. 209, 29–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Goldbeter, A. A model for circadian oscillations in the Drosophila period protein (PER). Proc. R. Soc. Lond. B 261, 319–324 (1995).

    Article  ADS  CAS  Google Scholar 

  51. Leloup, J. C. & Goldbeter, A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms 13, 70–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Tyson, J. J., Hong, C. I., Thron, C. D. & Novak, B. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys. J. 77, 2411–2417 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Glossop, N. R., Lyons, L. C. & Hardin, P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science 286, 766–768 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    ADS  CAS  PubMed  Google Scholar 

  55. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Ueda, H. R., Hagiwara, M. & Kitano, H. Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. J. Theor. Biol. 210, 401–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Smolen, P., Baxter, D. A. & Byrne, J. H. Modeling circadian oscillations with interlocking positive and negative feedback loops. J. Neurosci. 21, 6644–6656 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leloup, J. C. & Goldbeter, A. Towards a detailed computational model for the mammalian circadian clock. Proc. Natl Acad. Sci. USA (submitted).

  59. Richardson, G. S. & Malin, H. V. Circadian rhythm sleep disorders: pathophysiology and treatment. J. Clin. Neurophysiol. 13, 17–31 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Ebisawa, T. et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2, 342–346 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leloup, J. C. & Goldbeter, A. A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1206–R1212 (2001).

  63. Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature 403, 267–268 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Gonze, D., Halloy, J. & Goldbeter, A. Robustness of circadian rhythms with respect to molecular noise. Proc. Natl Acad. Sci. USA 99, 673–678 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA 99, 5988–5992 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goldbeter, A. et al. From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos 11, 247–260 (2001).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  67. Rinzel, J. A formal classification of bursting mechanisms in excitable systems. Lect. Notes Biomath. 71, 267–281 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  68. Olsen, L. F. & Degn, H. Chaos in biological systems. Q. Rev. Biophys. 18, 165–225 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. Glass, L. & Mackey, M.C. From Clocks to Chaos: The Rhythms of Life (Princeton Univ. Press, Princeton, 1988).

    Book  MATH  Google Scholar 

  70. Shen, P. & Larter, R. Chaos in intracellular Ca2+ oscillations in a new model for non-excitable cells. Cell Calcium 17, 225–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Kummer, U. et al. Switching from simple to complex oscillations in calcium signaling. Biophys. J. 79, 1188–1195 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goldbeter, A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl Acad. Sci. USA 88, 9107–9111 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Tyson, J. J. & Novak, B. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263.

  75. Tyson, J. J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nature Rev. Mol. Cell Biol. 2, 908–916 (2001).

    Article  CAS  Google Scholar 

  76. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Lev Bar-Or, R. et al. Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl Acad. Sci. USA 97, 11250–11255 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maroto, M. & Pourquié, O. A molecular clock involved in somite segmentation. Curr. Top. Dev. Biol. 51, 221–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Jacquet, M., Renault, G., Lallet, S., de Mey, J. & Goldbeter, A. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activator Msn2 in Saccharomyces cerevisiae. Nature (submitted).

  81. Boiteux, A., Goldbeter, A. & Hess, B. Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. Proc. Natl Acad. Sci. USA 72, 3829–3833 (1975).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Termonia, Y. & Ross, J. Oscillations and control features in glycolysis: numerical analysis of a comprehensive model. Proc. Natl Acad. Sci. USA 78, 2952–2956 (1981).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hynne, F., Dano, S. & Sorensen, P. G. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94, 121–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Reijenga, K. A., Westerhoff, H. V., Kholodenko, B. N. & Snoep, J. L. Control analysis for autonomously oscillating biochemical networks. Biophys. J. 82, 99–108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402 (Suppl.), C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Koshland, D. E. Jr The era of pathway quantification. Science 280, 852–853 (1998).

    Article  PubMed  Google Scholar 

  87. Petty, H. R. Neutrophil oscillations: temporal and spatiotemporal aspects of cell behavior. Immunol. Res. 23, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Nielsen, K., Sörensen, P. G. & Hynne, F. Chaos in glycolysis. J. Theor. Biol. 186, 303–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Honma, S. et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank G. Dupont, D. Gonze, B. Jacrot, J. C. Leloup and G. Oster for discussions and helpful comments on the manuscript. This work was supported by a grant from the Fonds de la Recherche Scientifique Médicale, Belgium.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldbeter, A. Computational approaches to cellular rhythms. Nature 420, 238–245 (2002). https://doi.org/10.1038/nature01259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01259

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing