Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synaptic depression in the localization of sound

A Corrigendum to this article was published on 08 May 2003


Short-term synaptic plasticity, which is common in the central nervous system, may contribute to the signal processing functions of both temporal integration and coincidence detection1,2,3. For temporal integrators, whose output firng rate depends on a running average of recent synaptic inputs, plasticity modulates input synaptic strength and thus may directly control signalling gain2 and the function of neural networks1,2,3,4. But the firing probability of an ideal coincidence detector would depend on the temporal coincidence of events rather than on the average frequency of synaptic events. Here we have examined a specific case of how synaptic plasticity can affect temporal coincidence detection, by experimentally characterizing synaptic depression at the synapse between neurons in the nucleus magnocellularis and coincidence detection neurons in the nucleus laminaris in the chick auditory brainstem5. We combine an empirical description of this depression with a biophysical model of signalling in the nucleus laminaris. The resulting model predicts that synaptic depression provides an adaptive mechanism for preserving interaural time-delay information (a proxy for the location of sound in space) despite the confounding effects of sound-intensity-related information. This mechanism may help nucleus laminaris neurons to pass specific sound localization information to higher processing centres.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic depression at NM–NL synapses.
Figure 2: Simulating phase-locked NM synaptic input to NL neurons.
Figure 3: Distinctive firing properties of chick and model NL neurons.
Figure 4: Synaptic depression buffers coincidence detection against changing sound intensity.


  1. Tsodyks, M., Pawelzik, K. & Markram, H. Neural networks with dynamic synapses. Neural Comput. 10, 821–835 (1998)

    Article  CAS  Google Scholar 

  2. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997)

    Article  CAS  Google Scholar 

  3. Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997)

    Article  CAS  Google Scholar 

  4. Nadim, F., Manor, Y., Kopell, N. & Marder, E. Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proc. Natl Acad. Sci. USA 96, 8206–8211 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Parks, T. N. & Rubel, E. W. Organization and development of brain stem auditory nuclei of the chicken: organization of projections from n. magnocellularis to n. laminaris. J. Comp. Neurol. 164, 435–448 (1975)

    Article  CAS  Google Scholar 

  6. Goldberg, J. M. & Brown, P. B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32, 613–636 (1969)

    Article  CAS  Google Scholar 

  7. Yin, T. C. & Chan, J. C. Interaural time sensitivity in medial superior olive of cat. J. Neurophysiol. 64, 465–488 (1990)

    Article  CAS  Google Scholar 

  8. Carr, C. E. & Konishi, M. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10, 3227–3246 (1990)

    Article  CAS  Google Scholar 

  9. Zhou, N. & Parks, T. N. Pharmacology of excitatory amino acid neurotransmission in nucleus laminaris of the chick. Hear. Res. 52, 195–200 (1991)

    Article  CAS  Google Scholar 

  10. Warchol, M. E. & Dallos, P. Neural coding in the chick cochlear nucleus. J. Comp. Physiol. A 166, 721–734 (1990)

    Article  CAS  Google Scholar 

  11. Pena, J. L., Viete, S., Albeck, Y. & Konishi, M. Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J. Neurosci. 16, 7046–7054 (1996)

    Article  CAS  Google Scholar 

  12. Reyes, A. D., Rubel, E. W. & Spain, W. J. In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. J. Neurosci. 16, 993–1007 (1996)

    Article  CAS  Google Scholar 

  13. Funabiki, K., Koyano, K. & Ohmori, H. The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. J. Physiol. (Lond.) 508, 851–869 (1998)

    Article  CAS  Google Scholar 

  14. Bruckner, S. & Hyson, R. L. Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick. Eur. J. Neurosci. 10, 3438–3450 (1998)

    Article  CAS  Google Scholar 

  15. Yang, L., Monsivais, P. & Rubel, E. W. The superior olivary nucleus and its influence on nucleus laminaris: a source of inhibitory feedback for coincidence detection in the avian auditory brainstem. J. Neurosci. 19, 2313–2325 (1999)

    Article  CAS  Google Scholar 

  16. Agmon-Snir, H., Carr, C. E. & Rinzel, J. The role of dendrites in auditory coincidence detection. Nature 393, 268–272 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Jackson, H. & Rubel, E. W. Ontogeny of behavioral responsiveness to sound in the chick embryo as indicated by electrical recordings of motility. J. Comp. Physiol. Psychol. 92, 682–696 (1978)

    Article  CAS  Google Scholar 

  18. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997)

    Article  CAS  Google Scholar 

  19. Koppl, C. Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J. Neurosci. 17, 3312–3321 (1997)

    Article  CAS  Google Scholar 

  20. Lilly, A. W. & North, K. A. K. An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol. 16, 509–527 (1953)

    Article  Google Scholar 

  21. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Brenowitz, S. & Trussell, L. O. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. J. Neurosci. 21, 9487–9498 (2001)

    Article  CAS  Google Scholar 

  23. Dobrunz, L. E., Huang, E. P. & Stevens, C. F. Very short-term plasticity in hippocampal synapses. Proc. Natl Acad. Sci. USA 94, 14843–14847 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci. 24, 637–643 (2001)

    Article  CAS  Google Scholar 

  25. von Gersdorff, H., Borst, J. & Gerard, G. Short-term plasticity at the calyx of Held. Nature Rev. Neurosci. 3, 55–64 (2002)

    Article  Google Scholar 

  26. Jeffress, L. A. Mathematical and electrical models of auditory detection. J. Acoust. Soc. Am. 44, 187–203 (1968)

    Article  ADS  CAS  Google Scholar 

  27. Tobias, J. V. & Zerlin, S. Lateralization thresholds as a function of stimulus duration. J. Acoust. Soc. Am. 31, 1591–1594 (1959)

    Article  ADS  Google Scholar 

  28. Wagner, H. A temporal window for lateralization of interaural time difference by barn owls. J. Comp. Physiol. A 169, 281–289 (1991)

    ADS  CAS  PubMed  Google Scholar 

  29. Smith, D. J. & Rubel, E. W. Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J. Comp. Neurol. 186, 213–239 (1979)

    Article  CAS  Google Scholar 

  30. Reyes, A. D., Rubel, E. W & Spain, W. J. Membrane properties underlying the firing of neurons in the avian cochlear nucleus. J. Neurosci. 14, 5352–5364 (1994)

    Article  CAS  Google Scholar 

Download references


We thank R. Lee for technical help and J. Simon for insight in using NEURON to model sound localization. This work was supported by a VA Merit Review and a grant from the National Institute for Deafness and Communication Disorders.

Author information

Authors and Affiliations


Corresponding author

Correspondence to William J. Spain.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cook, D., Schwindt, P., Grande, L. et al. Synaptic depression in the localization of sound. Nature 421, 66–70 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing