Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock

Abstract

The segmented aspect of the vertebrate body plan first arises through the sequential formation of somites. The periodicity of somitogenesis is thought to be regulated by a molecular oscillator, the segmentation clock, which functions in presomitic mesoderm cells. This oscillator controls the periodic expression of ‘cyclic genes’, which are all related to the Notch pathway1,2,3,4,5,6,7. The mechanism underlying this oscillator is not understood. Here we show that the protein product of the cyclic gene lunatic fringe (Lfng), which encodes a glycosyltransferase that can modify Notch activity, oscillates in the chick presomitic mesoderm. Overexpressing Lfng in the paraxial mesoderm abolishes the expression of cyclic genes including endogenous Lfng and leads to defects in segmentation. This effect on cyclic genes phenocopies inhibition of Notch signalling in the presomitic mesoderm. We therefore propose that Lfng establishes a negative feedback loop that implements periodic inhibition of Notch, which in turn controls the rhythmic expression of cyclic genes in the chick presomitic mesoderm. This feedback loop provides a molecular basis for the oscillator underlying the avian segmentation clock.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Lfng protein oscillates in the chick PSM.
Figure 2: Misexpression of Lfng or dnRBPjK abolishes cyclic expression of Lfng, whereas Notchicd causes ectopic expression of Lfng.
Figure 3: Lfng misexpression severely disrupts positioning of somitic borders and antero-posterior somitic compartmentalization.
Figure 4: Blocking Notch cleavage blocks the segmentation clock.

References

  1. McGrew, M. J., Dale, J. K., Fraboulet, S. & Pourquie, O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 979–982 (1998)

    CAS  Article  Google Scholar 

  2. Aulehla, A. & Johnson, R. L. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev. Biol. 207, 49–61 (1999)

    CAS  Article  Google Scholar 

  3. Forsberg, H., Crozet, F. & Brown, N. A. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr. Biol. 8, 1027–1030 (1998)

    CAS  Article  Google Scholar 

  4. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesiss. Cell 91, 639–648 (1997)

    CAS  Article  Google Scholar 

  5. Jouve, C. et al. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 127, 1421–1429 (2000)

    CAS  PubMed  Google Scholar 

  6. Holley, S. A., Geisler, R. & Nusslein-Volhard, C. Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev. 14, 1678–1690 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang, Y. J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Maroto, M. & Pourquie, O. A molecular clock involved in somite segmentation. Curr. Top. Dev. Biol. 51, 221–248 (2001)

    CAS  Article  Google Scholar 

  9. Pourquie, O. & Tam, P. P. A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Dev. Cell 1, 619–620 (2001)

    CAS  Article  Google Scholar 

  10. Holley, S. A., Julich, D., Rauch, G. J., Geisler, R. & Nusslein-Volhard, C. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129, 1175–1183 (2002)

    CAS  PubMed  Google Scholar 

  11. Hrabe de Angelis, M., McIntyre, J. & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721 (1997)

    ADS  CAS  Article  Google Scholar 

  12. Conlon, R. A., Reaume, A. G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development. 121, 1533–1545 (1995)

    CAS  PubMed  Google Scholar 

  13. del Barco Barrantes, I. et al. Interaction between Notch signalling and Lunatic Fringe during somite boundary formation in the mouse. Curr. Biol. 9, 470–480 (1999)

    CAS  Article  Google Scholar 

  14. Morales, A. V., Yasuda, Y. & Ish-Horowicz, D. Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to Notch signaling. Dev. Cell 3, 63–74 (2002)

    CAS  Article  Google Scholar 

  15. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002)

    ADS  CAS  Article  Google Scholar 

  16. Dubrulle, J., McGrew, M. J. & Pourquie, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001)

    CAS  Article  Google Scholar 

  17. Evrard, Y. A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R. L. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998)

    ADS  CAS  Article  Google Scholar 

  18. Zhang, N. & Gridley, T. Defects in somite formation in lunatic fringe-deficient mice. Nature 394, 374–377 (1998)

    ADS  CAS  Article  Google Scholar 

  19. Mansouri, A. et al. Paired-related murine homeobox gene expressed in the developing sclerotome, kidney, and nervous system. Dev. Dyn. 210, 53–65 (1997)

    CAS  Article  Google Scholar 

  20. Sato, Y., Yasuda, K. & Takahashi, Y. Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation. Development 129, 3633–3644 (2002)

    CAS  PubMed  Google Scholar 

  21. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch–ligand interactions. Nature 387, 908–912 (1997)

    ADS  CAS  Article  Google Scholar 

  22. Munro, S. & Freeman, M. The notch signalling regulator fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Curr. Biol. 10, 813–820 (2000)

    CAS  Article  Google Scholar 

  23. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000)

    ADS  CAS  Article  Google Scholar 

  24. Bruckner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature 406, 411–415 (2000)

    ADS  CAS  Article  Google Scholar 

  25. Waltzer, L., Bourillot, P., Sergeant, A. & Manet, E. RBP-jκ repression activity is mediated by a co-repressor and antagonised by the Epstein Barr virus transcription factor EBNA2. Nucleic Acids Res. 23, 4939–4945 (1995)

    CAS  Article  Google Scholar 

  26. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998)

    ADS  CAS  Article  Google Scholar 

  27. Cole, S. E., Levorse, J. M., Tilghman, S. M. & Vogt, T. F. Clock regulatory elements control cyclic expression of Lunatic Fringe during somitogenesis. Dev. Cell 3, 75–84 (2002)

    CAS  Article  Google Scholar 

  28. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999)

    ADS  CAS  Article  Google Scholar 

  29. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A.-C. Petit for help with analysing the Lfng mRNA expression profile; J. P. Rey for technical assistance; K. Katsube, D. Henrique, S. Mackem, O. Saitoh, E. Olson, M. Wolfe, A. Israel and R. Kopan for reagents; P. Torregrossa for help with statistical analysis; R. Kageyama for sharing unpublished information; T. Lecuit, S. Kerridge, D. Ish-Horowicz, M. Wolfe, M. Placzek, C. Hudson, J. Dubrulle, T. Iimura, S. Millet and V. Baubet for comments on the manuscript. This work was supported by a Wellcome Prize Travelling Research Fellowship, an EMBO Long term Fellowship, and a Fondation pour la recherche médicale (FRM) Postdoctoral Fellowship to J.K.D, a Marie Curie Individual Fellowship from the European Commission to M.M., and the laboratory was supported by funding from Centre national de la recherche scientifique (CNRS), Human Frontiers Science Programme Organisation (HESPO), Association franc¸aise contre les myopathies (AFM) and the Universite de la méditerranée-AP de Marseille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Pourquie.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dale, J., Maroto, M., Dequeant, ML. et al. Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock. Nature 421, 275–278 (2003). https://doi.org/10.1038/nature01244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01244

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing