Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium

Abstract

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs and PCDFs) are among the most notorious environmental pollutants. Some congeners, particularly those with lateral chlorine substitutions at positions 2, 3, 7 and 8, are extremely toxic and carcinogenic to humans1. One particularly promising mechanism for the detoxification of PCDDs and PCDFs is microbial reductive dechlorination. So far only a limited number of phylogenetically diverse anaerobic bacteria have been found that couple the reductive dehalogenation of chlorinated compounds—the substitution of a chlorine for a hydrogen atom—to energy conservation and growth in a process called dehalorespiration2. Microbial dechlorination of PCDDs occurs in sediments and anaerobic mixed cultures from sediments, but the responsible organisms have not yet been identified or isolated. Here we show the presence of a Dehalococcoides species in four dioxin-dechlorinating enrichment cultures from a freshwater sediment highly contaminated with PCDDs and PCDFs. We also show that the previously described chlorobenzene-dehalorespiring bacterium Dehalococcoides sp. strain CBDB1 (ref. 3) is able to reductively dechlorinate selected dioxin congeners. Reductive dechlorination of 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD) demonstrates that environmentally significant dioxins are attacked by this bacterium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time course of reductive dechlorination of 25 µM 1,2,3-TrCDD (a), 60 µM 1,2,4-TrCDD (b) and 46 µM 1,2,3,4-TeCDD (c) by Dehalococcoides sp. strain CBDB1.
Figure 2: Formation of dechlorination products from 1,2,3,7,8-PeCDD.
Figure 3: Proposed pathways of reductive dechlorination of spiked 1,2,3,4-TeCDD (a) and 1,2,3,7,8-PeCDD (b) by a pure culture of Dehalococcoides sp. strain CBDB1.

Similar content being viewed by others

References

  1. Kaiser, J. Just how bad is dioxin? Science 288, 1941–1944 (2000)

    Article  CAS  Google Scholar 

  2. Holliger, C., Wohlfarth, G. & Diekert, G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22, 383–398 (1999)

    Article  Google Scholar 

  3. Adrian, L., Szewzyk, U., Wecke, J. & Görisch, H. Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580–583 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Brzuzy, L. P. & Hites, R. A. Global mass balance for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 30, 1797–1804 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Meharg, A. A. & Osborn, D. Dioxins released from chemical accidents. Nature 375, 353–354 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Gribble, G. W. Encyclopedia of Environmental Analysis and Remediation (ed. Meyers, R. A.) 972–1035 (Wiley, New York, 1998)

    Google Scholar 

  7. Hoekstra, E. J., de Weerd, H., de Leer, E. W. B. & Brinkman, U. A. T. Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ. Sci. Technol. 33, 2543–2549 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Rappe, C. et al. PCDDs in naturally-formed lake sediment cores from Southern Mississippi, USA. Organohalogen Comp. 43, 111–116 (1999)

    CAS  Google Scholar 

  9. Müller, J. F. et al. PCDDs, PCDFs, PCBs and HCB in marine and estuarine sediments from Queensland, Australia. Chemosphere 39, 1707–1721 (1999)

    Article  ADS  Google Scholar 

  10. Adriaens, P. & Grbic-Galic, D. Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 29, 2253–2259 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Adriaens, P., Fu, Q. & Grbic-Galic, D. Bioavailability and transformation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ. Sci. Technol. 29, 2252–2260 (1995)

    Article  ADS  CAS  Google Scholar 

  12. Beurskens, J. E. M. et al. Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ. Toxicol. Chem. 14, 939–943 (1995)

    Article  CAS  Google Scholar 

  13. Barkovskii, A. L. & Adriaens, P. Microbial dechlorination of historically present and freshly spiked chlorinated dioxins and diversity of dioxin dechlorinating populations. Appl. Environ. Microbiol. 62, 4556–4562 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ballerstedt, H., Kraus, A. & Lechner, U. Reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin and its products by anaerobic mixed cultures from Saale River sediment. Environ. Sci. Technol. 31, 1749–1753 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Albrecht, I. D., Barkovskii, A. L. & Adriaens, P. Production and dechlorination of 2,3,7,8-tetrachlorodibenzo-p-dioxin in historically-contaminated estuarine sediments. Environ. Sci. Technol. 33, 737–744 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Beurskens, J. E. M., Mol, G. A. J., Barreveld, H. L., van Munster, B. & Winkels, H. J. Geochronology of priority pollutants in a sedimentation area of the Rhine River. Environ. Toxicol. Chem. 12, 1549–1566 (1993)

    Article  CAS  Google Scholar 

  17. Bunge, M., Ballerstedt, H. & Lechner, U. Regiospecific dechlorination of spiked tetra- and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments. Chemosphere 43, 675–681 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Maymó-Gatell, X., Chien, Y., Gossett, J. M. & Zinder, S. H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276, 1568–1571 (1997)

    Article  Google Scholar 

  19. Dojka, M. A., Hugenholtz, P., Haack, S. K. & Pace, N. R. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64, 3869–3877 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hendrickson, E. R. et al. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl. Environ. Microbiol. 68, 485–495 (2002)

    Article  CAS  Google Scholar 

  21. von Wintzingerode, F., Selent, B., Hegemann, W. & Göbel, U. B. Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl. Environ. Microbiol. 65, 283–286 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Löffler, F. E., Sun, Q., Li, J. & Tiedje, J. M. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl. Environ. Microbiol. 66, 1369–1374 (2000)

    Article  Google Scholar 

  23. Wu, Q., Watts, J. E. M., Sowers, K. R. & May, H. D. Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Appl. Environ. Microbiol. 68, 807–812 (2002)

    Article  CAS  Google Scholar 

  24. Cutter, L. A., Watts, J. E. M., Sowers, K. R. & May, H. D. Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ. Microbiol. 3, 699–709 (2001)

    Article  CAS  Google Scholar 

  25. Ballschmiter, K., Zoller, W., Schäfer, W. & Class, T. Quantitation of polychlorodibenzodioxin and polychlorobiphenyl standards by gas-chromatography-flame ionisation detection. Fresenius Z. Anal. Chem. 321, 247–251 (1985)

    Article  Google Scholar 

  26. DIN EN 1948-3 Stationary source emissions—determination of the mass concentration of PCDDs/PCDFs. Part 3. Identification and quantification (Beuth, Berlin, 1997)

    Google Scholar 

  27. Breitenstein, A., Saano, A., Salkinoja-Salonen, M., Andreesen, J. R. & Lechner, U. Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacteriun frappieri strain TCP-A. Arch. Microbiol. 175, 133–142 (2001)

    Article  CAS  Google Scholar 

  28. Ludwig, W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Weber for providing standards for 1,2-, 1,3- and 1,4-DiCDD; M. M. Häggblom and R. U. Halden for comments on the manuscript; and H. Ballerstedt for helpful discussion and support. This work was supported by grants of the Land Sachsen-Anhalt and the Deutsche Forschungsgemeinschaft to U.L. and M.B., of the Technische Universität Berlin to L.A. and of the Fonds der Chemischen Industrie to J.R.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bunge.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunge, M., Adrian, L., Kraus, A. et al. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421, 357–360 (2003). https://doi.org/10.1038/nature01237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01237

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing