Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mobilization of a transposon in the rice genome

Abstract

Rice (Oryza sativa L.) is an important crop worldwide and, with the availability of the draft sequence1,2, a useful model for analysing the genome structure of grasses3,4. To practice efficient rice breeding through genetic engineering techniques, it is important to identify the economically important genes in this crop. The use of mobile transposons as gene tags in intact plants is a powerful tool for functional analysis because transposon insertions often inactivate genes5. Here we identify an active rice transposon named miniature Ping (mPing) through analysis of the mutability of a slender mutation of the glume6—the seed structure that encloses and determines the shape of the grain. The mPing transposon is inserted in the slender glume (slg) mutant allele but not in the wild-type allele. Search of the O. sativa variety Nipponbare genome identified 34 sequences with high nucleotide similarity to mPing, indicating that mPing constitutes a family of transposon elements. Excision of mPing from slg plants results in reversion to a wild-type phenotype. The mobility of the transposon mPing in intact rice plants represents a useful alternative tool for the functional analysis of rice genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence structure of Rurm1+ in Gimbozu and Rurm1m in IM294.
Figure 2: Pedigrees of M5 and M6 lines used for investigating the relationship between two putatively different loci, Rurm1 and slg.
Figure 3: Various kinds of imprecise excision of mPing insertion.

Similar content being viewed by others

References

  1. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Stephen, A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002)

    Article  ADS  Google Scholar 

  3. Delseny, M. et al. Rice genomics: present and future. Plant Physiol. Biochem. 39, 323–334 (2001)

    Article  Google Scholar 

  4. Cartinhour, S. W. Public informatics resources for rice and other grasses. Plant Mol. Biol. 35, 241–251 (1997)

    Article  CAS  Google Scholar 

  5. Kunze, R., Seadler, H. & Lönning, W. Plant transposable elements. Adv. Bot. Res. 27, 321–470 (1997)

    Google Scholar 

  6. Teraishi, M. et al. Identification of a mutable slender glume gene in rice (Oryza sativa L.). Mol. Gen. Genet. 261, 487–494 (1999)

    Article  CAS  Google Scholar 

  7. Teraishi, M. et al. Identification of YAC clones containing the mutable slender glume locus in rice (Oryza sativa L.). Genome 44, 1–6 (2001)

    Article  CAS  Google Scholar 

  8. Furukawa, K., Mizushima, N., Noda, T. & Ohsumi, Y. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J. Biol. Chem. 275, 7462–7465 (2000)

    Article  CAS  Google Scholar 

  9. Bureau, T. E. & Wessler, S. R. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4, 1283–1294 (1992)

    Article  CAS  Google Scholar 

  10. Bureau, T. E., Ronald, P. C. & Wessler, R. S. A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl Acad. Sci. USA 93, 8524–8529 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Jurka, J. & Kapitonov, V. V. PIFs meets Tourists and Harbingers: a superfamily reunion. Proc. Natl Acad. Sci. USA 98, 12315–12316 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Feschotte, C., Jiang, N. & Wessler, S. R. Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3, 329–341 (2002)

    Article  CAS  Google Scholar 

  13. Van den Broeck, D. et al. Transposon display identifies individual transposable elements in high copy number elements. Plant J. 13, 121–129 (1998)

    CAS  PubMed  Google Scholar 

  14. Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N. & Iida, S. Colour-enhancing protein in blue petals. Nature 407, 581 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995)

    Article  CAS  Google Scholar 

  16. Maes, T., De Keukeleire, P. & Gerats, T. Plant tagnology. Trends Plant Sci. 4, 90–96 (1999)

    Article  CAS  Google Scholar 

  17. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. & Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl Acad. Sci. USA 93, 7783–7788 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Hirochika, H. Molecular Biology of Rice (ed. Shimamoto, K.) 43–58 (Springer, New York, 1999)

    Google Scholar 

  19. Hirochika, H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr. Opin. Plant Biol. 4, 118–122 (2001)

    Article  CAS  Google Scholar 

  20. Kumar, A. & Hirochika, H. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci. 6, 127–134 (2001)

    Article  CAS  Google Scholar 

  21. Nakazaki, T. & Ikehashi, H. Genomic sequence and polymorphisms of a rice chitinase gene, Cht4. Breed. Sci. 48, 371–376 (1998)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-Y. Hirano for providing information before publication; and H. Yamagata and H. Hirochika for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takatoshi Tanisaka.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazaki, T., Okumoto, Y., Horibata, A. et al. Mobilization of a transposon in the rice genome. Nature 421, 170–172 (2003). https://doi.org/10.1038/nature01219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01219

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing