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erratum

Simulation of the atmospheric
thermal circulation of a martian
volcano using a mesoscale
numerical model
Scot C. R. Rafkin, Magdalena R. V. Sta. Maria & Timothy I. Michaels

Nature 419, 697–699 (2002).
.............................................................................................................................................................................

In this Letter, “(see Supplementary Information)” should have
appeared at the end of the third sentence of the third paragraph. At
the end of the Letter, the line “Supplementary Information accom-
panies the paper on Nature’s website (ç http://www.nature.com/
nature).” should have been included. A

..............................................................

corrigendum

Undermethylation associated with
retroelement activation and
chromosome remodelling in an
interspecific mammalian hybrid
Rachel J. Waugh O’Neill, Michael J. O’Neill & Jennifer A. Marshall Graves

Nature 393, 68–72 (1998).
.............................................................................................................................................................................

In this Letter, the maternal species listed for hybrid BE-1 is
attributed to Macropus eugenii. However, our ongoing studies
show that the maternal complement of chromosomes in BE-1 was
inherited from a Macropus rufogriseus female. The centromeres of
M. rufogriseus chromosomes are extended in comparison to all
other macropod species. The extent, therefore, to which the cen-
tromere extensions shown in Fig. 4 can be attributed to hybrid-
specific amplification of the retrolement KERV-1 cannot be pre-
cisely determined. Nevertheless, Southern analysis confirms that
this retroelement is present at a 20% higher copy number in the
hybrid’s genome compared with that of its parents, and FISH
analysis shows KERV-1 localization only to centromeres in the
hybrid. Our conclusions regarding hybrid-specific undermethyla-
tion in this hybrid individual are not affected because M. rufogriseus
shows methylation levels typical of species within the macropod
group. Hybrid-specific undermethylation and genome rearrange-
ment also remain true for the Petrogale hybrids we presented. A
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