Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch

Abstract

The variability of El Niño/Southern Oscillation (ENSO) during the Holocene epoch, in particular on millennial timescales, is poorly understood. Palaeoclimate studies have documented ENSO variability for selected intervals in the Holocene, but most records are either too short or insufficiently resolved to investigate variability on millennial scales1,2,3. Here we present a record of sedimentation in Laguna Pallcacocha, southern Ecuador, which is strongly influenced by ENSO variability, and covers the past 12,000 years continuously. We find that changes on a timescale of 2–8 years, which we attribute to warm ENSO events, become more frequent over the Holocene until about 1,200 years ago, and then decline towards the present. Periods of relatively high and low ENSO activity, alternating at a timescale of about 2,000 years, are superimposed on this long-term trend. We attribute the long-term trend to orbitally induced changes in insolation, and suggest internal ENSO dynamics as a possible cause of the millennial variability. However, the millennial oscillation will need to be confirmed in other ENSO proxy records.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time series and wavelet power spectrum documenting changes in ENSO variability during the Holocene.

Similar content being viewed by others

References

  1. Thompson, L. G., Mosley-Thompson, E. & Thompson, P. A. El Nino: Historical and Paleoclimate Aspects of the Southern Oscillation (eds Diaz, H. F. & Markgraf, V.) 295–322 (Cambridge Univ. Press, Cambridge, 1992)

    Google Scholar 

  2. Cook, E. R., D'Arrigo, R. D., Cole, J. E., Stahle, D. W. & Villalba, R. El Nino and the Southern Oscillation (eds Diaz, H. F. & Markgraf, V.) 297–323 (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  3. Tudhope, A. W. et al. Variability in the El Nino:Southern oscillation through a glacial–interglacial cycle. Science 291, 1511–1517 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Rodbell, D. T. et al. An 15,000-year record of El Nino-driven alluviation in southwestern Ecuador. Science 283, 516–520 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Vuille, M., Bradley, R. S. & Keimig, F. Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J. Clim. 13, 2520–2535 (2000)

    Article  ADS  Google Scholar 

  6. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998)

    Article  ADS  Google Scholar 

  7. Gilman, D. L., Fuglister, F. J. & Mitchell, J. M. On the power spectrum of “red noise”. J. Atmos. Sci. 20, 182–184 (1963)

    Article  ADS  Google Scholar 

  8. Moy, C. M. A Continuous Record of Late-Quaternary El Nino-Southern Oscillation from the Southern Ecuadorian Andes Thesis Syracuse Univ. (2000)

    Google Scholar 

  9. Hansen, B. C. S. et al. Late-glacial and Holocene vegetation history from two sites in the western cordillera of southern Ecuador. Paleogeogr. Paleoclimatol. Paleoecol. (in the press)

  10. Rodbell, D. T. The timing of the last deglaciation in Cordillera Oriental, northern Peru, based on glacial geology and lake sedimentology. Geol. Soc. Am. Bull. 105, 923–934 (1993)

    Article  ADS  Google Scholar 

  11. Rodbell, D. T., Bagnato, S., Nebolini, J. C., Seltzer, G. O. & Abbott, M. B. A late glacial-Holocene tephrochronology for glacial lakes in southern Ecuador. Quat. Res. 57, 343–354 (2002)

    Article  CAS  Google Scholar 

  12. Cole, J. Paleoclimate: A slow dance for El Nino. Science 291, 1496–1497 (2001)

    Article  CAS  Google Scholar 

  13. Sandweiss, D. H. et al. Variation in Holocene El Nino frequencies: Climate records and cultural consequences in ancient Peru. Geology 29, 603–606 (2001)

    Article  ADS  Google Scholar 

  14. Clement, A. C., Seager, R. & Cane, M. A. Suppression of El Nino during the mid-Holocene by changes in the Earth's orbit. Paleoceanography 15, 731–737 (2000)

    Article  ADS  Google Scholar 

  15. Bond, G. C. et al. Mechanisms of Global Change at Millennial Time Scales Geophysical Monograph Series 112 (eds Clark, P.Webb, R. & Keigwin, L. D.) 35–58 (American Geophysical Union, Washington, DC, 1999)

    Book  Google Scholar 

  16. Stuiver, M., Braziunas, T. F., Becker, B. & Kromer, B. Climatic, solar, oceanic, and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quat. Res. 35, 1–24 (1991)

    Article  CAS  Google Scholar 

  17. Clement, A. C. & Cane, M. A. Mechanisms of Global Climate Change at Millennial Time Scales Geophysical Monograph Series 112 (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 363–371 (American Geophysical Union, Washington, D.C., 1999)

    Book  Google Scholar 

  18. Martin, L. et al. Southern-Oscillation signal in South-American paleoclimatic data of the last 7000 years. Quat. Res. 39, 338–346 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Bagnato and J. Turnbell for field assistance, and J. Lewalle for guidance with the wavelet analysis. Discussions with M. Cane, A. Clement and G. Compo significantly improved the manuscript. Funding was provided by the US NSF Earth System History Program (to G.O.S. and D.T.R.), and the Geological Society of America (GSA), the Quaternary Geology and Geomorphology Division of GSA, and the Syracuse University Department of Earth Sciences (to C.M.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Moy.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moy, C., Seltzer, G., Rodbell, D. et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002). https://doi.org/10.1038/nature01194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01194

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing