Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila


The RNA polymerase II elongation complex contains several factors that facilitate transcription elongation and catalyse the processing of precursor messenger RNAs (pre-mRNAs)1,2,3. The conserved elongation factor Spt6 is recruited rapidly and robustly to sites of active transcription4,5. Here we show that Drosophila Spt6 (dSpt6) co-purifies with the exosome, a complex of 3′ to 5′ exoribonucleases that is implicated in the processing of structural RNA and in the degradation of improperly processed pre-mRNA6,7,8,9,10. Immunoprecipitation assays of Drosophila nuclear extracts show that the exosome also associates with the elongation factor dSpt5 and RNA polymerase II. In vivo, exosome subunits colocalize with dSpt6 at transcriptionally active loci on polytene chromosomes during normal development and are strongly recruited to heat-shock loci on gene induction. At higher resolution, chromatin immunoprecipitation analysis shows that the exosome is recruited to transcriptionally active units of heat-shock genes. These data provide a physical basis for the hypothesis that exosome-mediated pre-mRNA surveillance accompanies transcription elongation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The exosome co-purifies with dSpt6p.
Figure 2: The exosome associates with transcriptionally active loci on polytene chromosomes.
Figure 3: Crosslinking and immunoprecipitation of the exosome at Drosophila heat-shock genes.


  1. Hirose, Y. & Manley, J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000)

    CAS  PubMed  Google Scholar 

  2. Bentley, D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr. Opin. Cell Biol. 11, 347–351 (1999)

    CAS  Article  Google Scholar 

  3. Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002)

    CAS  Article  Google Scholar 

  4. Kaplan, C. D., Morris, J. R., Wu, C. & Winston, F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14, 2623–2634 (2000)

    CAS  Article  Google Scholar 

  5. Andrulis, E. D., Guzman, E., Doring, P., Werner, J. & Lis, J. T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14, 2635–2649 (2000)

    CAS  Article  Google Scholar 

  6. Hilleren, P., McCarthy, T., Rosbash, M., Parker, R. & Jensen, T. H. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413, 538–542 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Butler, J. S. The yin and yang of the exosome. Trends Cell Biol. 12, 90–96 (2002)

    CAS  Article  Google Scholar 

  8. Bousquet-Antonelli, C., Presutti, C. & Tollervey, D. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102, 765–775 (2000)

    CAS  Article  Google Scholar 

  9. van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002)

    ADS  CAS  Article  Google Scholar 

  10. Torchet, C. et al. Processing of 3′-extended read-through transcripts by the exosome can generate functional mRNAs. Mol. Cell 9, 1285–1296 (2002)

    CAS  Article  Google Scholar 

  11. Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357–369 (1998)

    CAS  Article  Google Scholar 

  12. Bortvin, A. & Winston, F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272, 1473–1476 (1996)

    ADS  CAS  Article  Google Scholar 

  13. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    ADS  CAS  Article  Google Scholar 

  14. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev. 13, 2148–2158 (1999)

    CAS  Article  Google Scholar 

  15. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91, 457–466 (1997)

    CAS  Article  Google Scholar 

  16. Mitchell, P. & Tollervey, D. Musing on the structural organization of the exosome complex. Nature Struct. Biol. 7, 843–846 (2000)

    CAS  Article  Google Scholar 

  17. Lis, J. T., Mason, P., Peng, J. & Price, D. H. P-TFFb kinase recruitment and function at heat shock loci. Genes Dev. 14, 792–803 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Erdjument-Bromage, H. et al. Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. J. Chromatogr. A 826, 167–181 (1998)

    CAS  Article  Google Scholar 

  19. Geromanos, S., Freckleton, G. & Tempst, P. Tuning of an electrospray ionization source for maximum peptide-ion transmission into a mass spectrometer. Anal. Chem. 72, 777–790 (2000)

    CAS  Article  Google Scholar 

  20. Mann, M., Hojrup, P. & Roepstorff, P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass. Spectrom. 22, 338–345 (1993)

    CAS  Article  Google Scholar 

  21. Fenyo, D., Qin, J. & Chait, B. T. Protein identification using mass spectrometric information. Electrophoresis 19, 998–1005 (1998)

    CAS  Article  Google Scholar 

  22. Park, J. M., Werner, J., Kim, J. M., Lis, J. T. & Kim, Y. J. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol. Cell 8, 9–19 (2001)

    CAS  Article  Google Scholar 

  23. Shopland, L. S. & Lis, J. T. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences. Chromosoma 105, 158–171 (1996)

    CAS  Article  Google Scholar 

Download references


We thank members of the Lis laboratory for comments on the manuscript. This work was supported by an NIH grant to J.T.L., a National Research Service Award to E.D.A., and a National Cancer Institute (NCI) Cancer Center Support Grant to P.T.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Erik D. Andrulis or John T. Lis.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andrulis, E., Werner, J., Nazarian, A. et al. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420, 837–841 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing